Effects of copper addition to laboratory maintained microcosms of Presidente Calles Reservoir organisms (Aguascalientes, Mexico)

Authors

  • Roberto Rico-Martínez Universidad Autónoma de Aguascalientes, Centro Básico. Avenida Universidad 940, Aguascalientes, Ags. C.P. 20100, Mexico city, Mexico
  • Ignacio A. Pérez-Legaspi Universidad Autónoma de Aguascalientes, Centro Básico. Avenida Universidad 940, Aguascalientes, Ags. C.P. 20100, Mexico city, Mexico
  • Gustavo E. Quintero-Díaz Universidad Autónoma de Aguascalientes, Centro Básico. Avenida Universidad 940, Aguascalientes, Ags. C.P. 20100, Mexico city, Mexico
  • Miriam G. Rodríguez-Martínez Universidad Autónoma de Aguascalientes, Centro Básico. Avenida Universidad 940, Aguascalientes, Ags. C.P. 20100, Mexico city, Mexico
  • Miguel A. Hernández-Rodríguez Universidad Autónoma de Aguascalientes, Centro Básico. Avenida Universidad 940, Aguascalientes, Ags. C.P. 20100, Mexico city, Mexico
  • Juan E. Zaragoza-Almaraz Universidad Autónoma de Aguascalientes, Centro Básico. Avenida Universidad 940, Aguascalientes, Ags. C.P. 20100, Mexico city, Mexico

Keywords:

Zooplankton dynamics, Ecotoxicology, Metal toxicity

Abstract

We studied the effects of five different concentrations of copper (0.05, 0.20, 0.45, and of 0.05 added continuously up to 0.45 mg l-1) in 30 l aquaria containing water and organisms from Presidente Calles reservoir, the biggest reservoir in the State of Aguascalientes, Mexico. Large reductions in zooplankton density, species diversity and total chlorophyll were found when we compared the different treatments against controls. Initial addition of a greater amount of copper has a more adverse effect than constant additions of small amounts of copper as suggested by smaller reductions in zooplankton density and chlorophyll. This result agrees with the previous reports on the effects of other metals in different aquatic microcosms. The most dramatic effect of copper addition on zooplankton density was found three days after copper addition. Lethal effects on cladocerans, copepods, and rotifers were found at a concentration of 0.45 mg l-1. These results are important for regulatory agencies in Mexico as there are only a few studies about effects of toxicants on Mexican aquatic ecosystems.

References

Anonymous, Standard Methods for the Examination of Water and Wastewater, 13th ed. New York, , USA1981 874 874

Burbank, S. and Snell, T.W. 1994. Rapid toxicity assessment using esterase biomarkers in Brachionus calyciflorus (Rotifera). Environ. Tox. Water Qual, 9: 171–178.

Flores T.F.J. Estudio Limnológico de la Presa Presidente Calles Mpio. de San Jóse de Gracia, Ags Estudio Taxonómico Edológico de la Flora y Fauna del Estado de Aguascalientes Universidad Autónoma de Aguascalientes Aguascalientes México 1982 7 49 In

Hendrix, P.F., Langner, C.L., Odum, E.P. and Thomas, C.L. 1981. Microcosms as test systems for the ecotoxicological effects of toxic substances: an appraisal with cadmium. US Environmental Protection Agency publication EPA-600/S3-81-036,

Hoagland, K.D., Drenner, R.W., Smith, J.D. and Cross, D.R. 1993. Freshwater community responses to mixtures of agricultural pesticides: effects of atrazine and bifenthrin. Environ. Tox. and Chem., 12: 627–637.

Koste, W. 1978. Rotatoria, Die Radertierte Mittleleuropas, Berlin, , Germany: Gebruder Borntraeger.

Lacher, T.E. and Goldstein, M.I. 1997. Tropical ecotoxicology: status and needs. Environ. Tox. Chem., 16(1): 100–111. ((1))

Milliken, G.A. and Johnson, D.A. 1992. Analysis of messy data (vol. I). Designed experiments, New York, , USA: Van Nostrand Reinhold.

Newman M. Effects at the Community Level. Quantitative Methods in Aquatic Ecotoxicology Lewis Publishers Boca Raton Florida USA 1995 265 321

NOM-014-ECOL-1993. Norma Oficial Mexicana que establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales a cuerpos receptores provenientes de la industria textil, Mexico: Diario Oficial de la Federación (18 de Octubre de 1993).

Niederlehner, B.R. and Cairns, J. Jr. 1994. Consistency and sensitivity of community level endpoints in microcosm tests. J. Aquat. Ecosyst. Health, 3: 93–99.

Rand, G.M. and Petrocelli, S.R. 1985. Fundamentals of Aquatic Toxicology, New York, , USA: Hemisphere Publishing Corporation.

Rico-Martínez, R. and Silva-Briano, M. 1993. Contribution to the knowledge of the rotifera of Mexico. Hydrobiologia, 255/256: 467–474.

Sheehan P. Functional Changes in the Ecosystem Effects of Pollutants at the Ecosystem Level. Scientific Committee on Problems in the Environment Sheehan P. Miller D. Butler G. Bourdeau P. OttawaOntarioCanada1984 101 145 In

Snell, T.W. and Janssen, C.R. 1995. Rotifers in ecotoxicology: a review. Hydrobiologia, 313/314: 231–247.

Sugiura, K. 1992. A multispecies laboratory microcosm for screening ecotoxicological impacts of chemicals. Environ. Tox Chem., 11: 1217–1226.

Silva-Briano, M. 1992. Preliminary study of the zooplankton of Mexico. End of course report of the International Training Course: Lake Management: A Tool in Lake Management, Ghent, , Belgium: State University of Ghent.

Vollenweider, R.A. 1974. A manual on methods for measuring primary production in aquatic environments, 2nd ed., Oxford, , England: Blackwell Scientific.

Welch, E.B. 1980. “Phytoplankton and Controlling Factors: Eutrophication”. In Ecological Effects of Waste Water, 118–172. Cambridge, , UK: Cambridge University Press.

Published

1998-01-01