Tidal effects on nutrients and phytoplankton distribution in Bertioga Channel, São Paulo, Brazil

Authors

  • S.M.F. Gianesella Instituto Oceanográfico da Universidade de São Paulo, Pça do Oceanográfico, 191 CEP 05508-900, São Paulo, SP, Brazil
  • F.M.P. Saldanha-Corrêa Instituto Oceanográfico da Universidade de São Paulo, Pça do Oceanográfico, 191 CEP 05508-900, São Paulo, SP, Brazil
  • C. Teixeira Instituto Oceanográfico da Universidade de São Paulo, Pça do Oceanográfico, 191 CEP 05508-900, São Paulo, SP, Brazil

Keywords:

Estuary, Phytoflagellate, Diatom

Abstract

Dissolved nutrients and phytoplankton distribution in the Bertioga Channel, São Paulo State, were studied over a neap and a spring tide during the austral winter of 1991. Tidal influence and freshwater flow were the main forcing agents on the water column structure, nutrient availability and phytoplankton distribution as pointed out by the principal component analysis. The channel was vertically stratified during neap tide, but almost fully homogeneous during spring tide, especially in the flood phase. The inner area of the channel had high nutrient concentrations (up to 25 μM ammonium) and low dissolved oxygen saturation (minimum 20%). Phytoplankton biomass, measured as chlorophyll-a concentration, was low (maximum, 4.5 mg m−3) considering the high nutrient availability. The highest chlorophyll-a levels were associated with waters of coastal origin and flood periods. The phytoplankton community was dominated by phytoflagellates but the contribution of diatoms became very significant during spring tide. The major microphytoplankton forms were Skeletonema costatum and Pseudonitzschia species. The noticeable presence of freshwater species (Pinnularia, Synedra and Scenedesmus species), indicated the important role of freshwater inflow in the composition of local phytoplankton community. Data suggest that the high flushing rates and hydrodynamic instability at Bertioga Channel accounted for the low phytoplankton biomass observed in the environment.

References

Aminot, A. and Chaussepied, M. 1983. Manuel des analyses chimiques en milieu marin, Brest: CNEXO.

APHA (American Public Health Association), and AWWA (American Water Works Association) and WPCF (Water Pollution Control Federation). 1985. Standard Methods for the Examination of Water and Wastewater, 16th ed, Washington, DC: APHA.

CETESB (Companhia de Tecnologia de Saneamento Ambiental). 1978. Poluição das Águas no Estuário e BaÍa de Santos, vols. I and II, Governo do Est. de São Paulo, Secretaria de Obras e Meio Ambiente

Cloern, J.E. and Nichols, F.H. 1985. Time scales and mechanisms of estuarine variability, a synthesis from studies of San Francisco Bay. Hydrobiology, 29: 229–237.

Demers, S., Legendre, L. and Therriault, J.C. 1986. “Phytoplankton responses to vertical tidal mixing”. In Lecture Notes on Coastal and Estuarine Studies, Edited by: Bowman, J., Yentsch, M. and Peterson, W.T. Vol. 17, 1–40. Berlin: Springer. In

Fúlfaro, V.J. and Ponçano, W.L. 1976. Sedimentação atual do estuário da BaÍa de Santos: um modelo geológico aplicado a Projetos de Expansão da Zona Portuária, I Congresso Brasileiro de Geologia e Engenharia, Resumos 2 67–90.

Gianesella-Galvão, S.M.F. 1982. Standing-stock and potential of phytoplankton production in the Bay of Santos. Brazil. Bolm. Inst. Oceanogr., 31(2): 85–94.

Grasshoff, K., Ehrhardt, M. and Kremling, K. 1983. Methods of Seawater Analysis, Basel: Verlag Chemie.

Hansen, D.V. and Rattray, M. Jr. 1966. New dimensions in estuary classification. Limnol. Oceanogr., 2: 319–326.

Harari, J. and Camargo, R. 1998. Modelo numérico da região costeira de Santos (SP): circulação de maré. Rev. Bras. Oceanogr., 46(2): 135–156.

Henriksen, K. and Kemp, W.M. 1988. “Nitrification in estuarine and coastal marine sediments”. In Nitrogen Cycling in Coastal Marine Environments, Edited by: Blackburn, T.H. and Sorensen, J. 207–249. New York: Wiley. In

Holm-Hansen, O., Lorenzen, C.J., Holmes, R.W. and Strickland, J.D.H. 1965. Fluorimetric determination of chlorophyll. J. Cons. Perm. Intern. l' Explor. Mer., 30: 3–15.

Hooper, A.B. and Terry, K.R. 1974. Photoinactivation of ammonia oxidation in Nitrosomonas. J. Bacteriol., 119: 899–906.

Jenkins, M.C. and Kemp, W.M. 1984. The coupling of nitrification and denitrification in two estuarine sediments. Limnol. Oceanogr., 29: 609–619.

Ketchum, B.H. 1967. “Phytoplankton nutrients in estuaries”. In Estuaries. American Association for the Advancement of Science, Edited by: Lauff, G.H. Vol. 83, 329–335. Washington, DC: The Horn-Shafer Company. In

Kutner, M.B.B. and Aidar-Aragão, E. 1980. “Influência do fechamento do Valo Grande sobre a composição do fitoplâncton na região de Cananéia (25°S–48°W)”. In Algas: a Energia do Amanhã. Instituto Oceanográfico da Universidade de São Paulo, S Paulo Edited by: de M Bicudo, C.E., Teixeira, C. and Tundisi, J.G. 109–120. In

Margalef, R. 1978. Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta, 1(4): 493–509.

Marra, J. 1978. Phytoplankton photosynthetic response to vertical movement in mixed layers. Mar. Biol., 40: 203–208.

Miranda, L.B., Castro, B.M. and Kjerfve, B. 1998. Circulation and mixing due to tidal forcing in the Bertioga Channel, 2: 204–214. São Paulo, Brazil. Estuaries

Nixon, S.W. 1981. “Remineralization and nutrient cycling in coastal marine ecosystems”. In Estuaries and Nutrients, Edited by: Neilson, B.J. and Cronin, L.E. 111–138. New Jersey: Humana Press. In

Olson, R.J. 1981. Differencial photoinhibition of marine nitrifying bacteria: a possible mechanism for the formation of the primary nitrite maximum. J. Mar. Res., 39: 227–238.

Poole, H.H. and Atkins, W.R.G. 1929. Photo-electric measurements of submarine illumination throughout the year. J. Mar. Biol. Assoc., 16: 297–324.

Riley, G.A. 1966. “The plankton of estuaries”. In Estuaries. American Association for the Advancement of Science, Edited by: Lauff, G.H. Vol. 83, 316–326. Washington, DC: The Horn-Shafer Company. In

Shephard, G.J. 1994. FITOPAC I, Manual de usuário, Departamento de Botânica, São Paulo: Universidade de Campinas.

Teixeira, C. 1969. Estudo sobre algumas caracterÍsticas do fitoplâncton da região de Cananéia e o seu potencial fotossintético, Tese de Doutorado, Ciências e Letras: Universidade de São Paulo, Faculdade de Filosofia.

Tundisi, J.G., Teixeira, C., Matsumura-Tundisi, T., Kutner, M.B.B. and Kinoshita, L. 1978. Plankton studies in a mangrove environment. IX. Comparative investigations with coastal oligotrophic waters. Rev. Brasil. Biol., 38(2): 301–320.

Uncles, R.J., Elliot, R.C.A. and Weston, S.A. 1985. Observed fluxes of water, salt and suspended sediment in a partly mixed estuary. Est. Coast. Shelf Sci., 20: 147–167.

UNESCO (United Nations Educational Scientific Cultural Organization). 1981. The practical salinity scale 1978 and the international equation of state of seawater 1980, UNESCO Technical Papers in Marine Science Vol. 36,

UNESCO (United Nations Educational Scientific Cultural Organization). 1973. International oceanographic tables (2), Paris: National Institute of Oceanography of Great Britain.

Uthermöhl, H. 1958. Zur Vervollkomnung der quantitativen Phytoplankton Methodik. Mitteilungen internationale vereinigung für theoretische und angewandte. Limnologie, 9: 1–38.

White, E., Payne, G., Pickmere, S. and Pick, F.R. 1982. Factors influencing orthophosphate turnover times: a comparison of Canada and New Zealand lakes. Can. J. Fish. Aq. Sci., 39: 496–574.

Published

2000-01-01