A hypothesis for the assessment of the importance of microbial food web linkages in nearshore and offshore habitats of the Laurentian Great Lakes

Authors

  • Robert T. Heath Kent State University, Kent, Ohio, USA
  • Soon-Jin Hwang Kent State University, Kent, Ohio, USA
  • Mohiuddin Munawar Department of Fisheries and Oceans, Canada Centre for Inland Waters, Burlington, Ontario, Canada

Keywords:

bacteria, phytoplankton, picoplankton, carbon, phosphorus

Abstract

Our work in the Laurentian Great Lakes of North America indicates that significant fluxes of carbon and phosphorus can pass through the microbial food webs (MFW) of these lakes. Here we present a synthesis of our recent investigations conducted largely along a trophic axis from the heavily eutrophic coastal Sandusky Bay to offshore communities near the international boundary in the central basin of Lake Erie. We find that the significance of the MFW in transporting C and P to higher trophic levels differs along a trophic gradient. In relatively eutrophic nearshore communities, most C and P are fixed into phytoplankton, transport of materials is largely dependent on grazing by cladocerans, and transport through the MFW is relatively insignificant. In contrast, in relatively oligotrophic offshore communities bacterial biomass often exceeds phytoplankton biomass, the majority of P is fixed into bacteria, bacterivorous grazers (e.g. rotifers and protozoa) dominate, copepods are the dominant microcrustacean, and transport of C and P through the MFW represents a major pathway. We suggest that the management of large-lake ecosystems is largely based on relatively eutrophic “nearshore” views of the base of the food web and needs to be modified to include considerations of the MFW in the more oligotrophic offshore regions of these lakes.

References

Azam, F., Fenchel, T., Field, J. G., Grey, J. S., Meyer-Reil, L. A. and Thingstad, F. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser., 10: 257–263.

Bergstrom, I., Heinanen, A. and Salonen, K. 1986. Comparison of acridine orange, acriflavine, and bisbenzimide stains for enumeration of bacteria in clear and humic lakes. Appl. Environm. Microbiol., 51: 664–667.

Carlson, R. E. 1977. A trophic state index for lakes. Limnol. Oceanogr., 22: 361–368.

Caron, D. A. 1983. Technique for enumeration of hetertrophic and phototrophic nanoplankton using epifluorescence microscopy and comparison with other procedures. Appl. Environm. Microbiol., 46: 491–498.

Cho, B. C. and Azam, F. 1990. Biogeochemical significance of bacterial biomass in the ocean's euphotic zone. Mar. Ecol. Prog. Ser., 63: 253–259.

Culver, D. A., Boucherie, M. M., Bean, D. J. and Fletcher, J. W. 1985. Biomass of freshwater crustacean Zooplankton from lengthweight regressions. Can. J. Fish. Aquat. Sci., 42: 1380–1390.

Currie, D. J., Bentzen, E. and Kalff, J. 1986. Does algal-bacterial phosphorus partitioning vary among lakes? A comparative study of orthophosphate uptake and alkaline phosphatase activity in freshwater. Can. J. Fish. Aquat. Sci., 43: 311–318.

De Ruiter, P. C., Neutel, A. and Moore, J. C. 1995. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science, 269: 1257–1260.

Dozier, B. J. and Richardson, P. J. 1975. An improved membrane filter method for the enumeration of phytoplankton. Verh. Int. Verein. Limnol., 19: 1524–1529.

Ducklow, H. W. 1999. The bacterial component of the oceanic euphotic zone. FEMS Microbiol. Ecol., 30: 1–10.

Ducklow, H. W. 2000. “Bacterial production and biomass in the oceans.”. In Microbial Ecology of the Oceans, Edited by: Kirchman, D. L. 85–120. Wiley-Liss, Inc.. Chapter 4

Ducklow, H. and Carlson, C. A. 1992. Oceanic bacterial productivity. Adv. Microb. Ecol., 12: 113–181.

Fahnenstiel, G. L. and Scavia, D. 1987. Dynamics of Lake Michigan phytoplankton: primary production and growth. Can. J. Fisheries Aquat. Sci., 49: 379–388.

Fukuda, R., Ogawa, H., Nagata, T. and Koike, I. 1998. Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl. Environm. Microbiol., 64: 3352–3358.

Gao, X. 2002. “Phosphorus Dynamics in Freshwater Lakes--Examining the Factors that Control Phosphate Uptake by Bacterioplankton Communities”. 306Kent, OH: Kent State University. Ph.D. Dissertation

Gao, X. and Heath, R. T. 2003. Factors that control phosphate uptake and cell phosphorus content in natural bacterioplankton communities in review

Garono, R. J., Heath, R. T. and Hwang, S.-J. 1996. Detrended correspondence analysis of phytoplankton abundance and distribution in Sandusky Bay and Lake Erie. J. Great Lakes Res., 22: 818–829.

Hwang, S.-J. 1995. Carbon dynamics of plankton communities in nearshore and offshore communities of Lake Erie: the significance of the microbial loop for higher trophic levels, 481Kent State University. Dissertation

Hwang, S.-J. and Heath, R. T. 1997a. Bacterial productivity and protozoan bacterivory in coastal and offshore communities of Lake Erie. Can. J. Fisheries Aquat. Sci., 54: 788–799.

Hwang, S.-J. and Heath, R. T. 1997b. The distribution of protozoa across a trophic gradient, factors controlling their abundance and importance in the plankton food web. Journal of Plankton Research, 19: 491–518.

Hwang, S.-J. and Heath, R. T. 1999. Comparative in situ micro- and macrozooplankton bacterivory in coastal and offshore communities of Lake Erie. Journal of Plankton Research., 21: 699–719.

Landry, M. R. and Hassett, R. P. 1982. Estimating the grazing impact of marine micro-zooplankton. Mar. Biol., 67: 283–287.

Lewis, M. R. and Smith, J. C. 1983. A small volume, short-incubation-time method for measurement of photosynthesis as a function of incident irradiance. Mar. Ecol. Prog. Ser., 13: 99–102.

Markarewicz, J. C. 1993. Phytoplankton biomass and species composition in Lake Erie, 1970-1987. J. Great Lakes Res., 19: 258–274.

Munawar, M. and Fahnenstiel, G. F. 1982. The abundance and significance of ultraplankton and micro-algae at an offshore station in central Lake Superior. Can. Tech. Report Fish. Aquatic Sci., 1153: 1–15.

Munawar, M. and Lynn, D. H. 2002. Planktonic ciliates of the North American Great Lakes: Lakes Superior, Huron, Erie, and Ontario. Aquat. Ecosyst. Health Manage., 5(3): 345–354.

Munawar, M. and Weisse, T. 1989. Is the microbial loop an early warning indicator of anthropogenic stress?. Hydrobiologia, 188/189: 163–174.

Munawar, M. and Munawar, I. F. 2000. Phytoplankton Dynamics in the North American Great Lakes, Vol. 2, 253Backhuys Publ..

Munawar, M., Munawar, I. F., CuIp, L. R. and Dupuis, G. 1978. Relative importance of nannoplankton in Lake Superior phytoplankton biomass and community metabolism. J. Great Lakes Res., 4: 462–480.

Munawar, M., Munawar, I. F., Weisse, T., Leppard, G. G. and Legner, M. 1994. The significance and future potential of using microbes for assessing ecosystem health: the Great Lakes example. J. Aquat. Ecosyst. Health Manage., 3: 295–310.

Munawar, M., Munawar, I. F. and Weisse, T. 1995. “Utility and application of autotrophic picoplankton as bioindicators of ecosystem health.”. In Bioindicators of Environmental Health, Ecovision World Monograph Series Edited by: Munawar, M., Hanninen, O., Roy, S., Munawar, N., Karenlampi, L. and Brown, D. 13–27. Amsterdam, , The Netherlands: SPB Academic Publishing.

Munawar, M., Legner, M. and Munawar, I. F. “Assessing the microbial food web structure in Lake Ontario”. In State of Lake Ontario (SOLO)--Past, Present and Future, Ecovision World Monograph Series Edited by: Munawar, M. Aquat. Ecosyst. Health and Management Soc.. in press

Naeem, S. and Li, S. 1997. Biodiversity enhances ecosystem reliability. Nature, 390: 507–509.

Odum, E. P. 1969. The strategy of ecosystem development. Science, 164: 262–270.

Odum, H. T. 1960. Ecological potential and analogue circuits for the ecosystem. Am. Sci., 48: 1–8.

Pace, M. L. and Orcutt, D. Jr. 1981. The relative importance of protozoans, rotifers, and crustaceans in a freshwater Zooplankton community. Limnol. Oceanogr., 26: 822–830.

Pomeroy, L. R. 1973. The ocean's food web: a changing paradigm. BioScience, 24: 499–504.

Riemann, B. and Bell, R. T. 1990. Advances in estimating bacterial biomass and growth in aquatic systems. Arch. Hydrobiol., 118: 385–402.

Riemann, B., Bell, R. T. and Jorgensen, N. O. J. 1990. Incorporation of thymidine, adenine and leucine into natural bacterial assemblages. Mar. Ecol. Prog. Ser., 65: 87–94.

Scavia, D., Laird, G. A. and Fahnenstiel, G. L. 1986. Production of planktonic bacteria in Lake Michigan. Limnol. Oceanogr., 31: 612–626.

Scavia, D. and Laird, G. A. 1987. Bacterioplankton in Lake Michigan: dynamics, controls and significance to carbon flux. Limnol. Oceanogr., 32: 1017–1032.

Schindler, D. E., Carpenter, S. R., Cole, J. J., Kitchell, J. F. and Pace, M. R. 1997. Influence of food web structure on carbon exchange between lakes and the atmosphere. Science, 277: 1280–1283.

Sherr, E. and Sherr, B. 1988. Role of microbes in pelagic food webs: a revised concept. Limnol. Oceanogr., 33: 1225–1227.

Sherr, E. B., Sherr, B. F. and Albright, L. J. 1987. Bacteria: link or sink?. Science, 235: 88–89.

Simon, M. and Azam, E. 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser., 51: 201–213.

Slobodkin, L. B. 1960. Energetics in Daphnia pulex populations. Ecology, 40: 232–243.

Sommer, U. 1983. Nutrient competition between phytoplankton species. Arch. Hydrobiol., 96: 399–416.

Sommer, U. 1989. “The role of competition for resources in phytoplankton succession.”. In Plankton Ecology: Succession In Plankton Communities, Edited by: Sommer, U. 57–106. Springer-Verlag.

Sondergaard, M., Hansen, B. and Markager, S. 1995. Dynamics of dissolved organic carbon lability in a eutrophic lake. Limnol. Oceanogr., 40: 46–54.

Sondergaard, M. B. and Middelboe, M. 1995. A cross-system analysis of labile dissolved organic carbon. Mar. Ecol. Prog. Ser., 118: 283–294.

Strathmann, R. R. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr., 112: 411–418.

Vadstein, O., Olsen, Y. and Reinertsen, H. 1993. The role of planktonic bactyeria in phosphorus cycling in lakes-sink or link?. Limnol. Oceanogr., 38: 1538–1544.

Vadstein, O. 2000. Heterotrophic, planktonic bacteria and cycling of phosphorus, phosphorus requirements, competitive ability, and food web interactions. Adv. Microb. Ecol., 16: 115–167.

Vitousek, P. 1982. Nutrient cycling and nutrient use efficiency. Am. Nat., 119: 553–572.

Wetzel, R. G. and Likens, G. E. 1991. Limnological methods , 2nd Ed., 391Springer-Verlag.

Weisse, T. 1991. The annual cycle of heterotrophic freshwater nanoflagellates: role of bottom-up versus top-down control. J. Plankton Res., 13: 167–185.

Wilhelm, S. W. and Smith, R. E. H. 2000. Bacterial carbon production in Lake Erie is influenced by both viruses and solar radiation. Can. J. Fish. Aquat. Sci., 57: 317–326.

Wylie, J. L. and Currie, D. J. 1991. The relative importance of bacteria and algae as food sources for crustacean Zooplankton. Limnol. Oceanogr., 36: 708–728.

Published

2003-09-01