Size-fractionated δ15N and δ13C isotope ratios elucidate the role of the microbial food web in the pelagial of Lake Tanganyika

Authors

  • J. Sarvala University of Turku, Department of Biology, Turku, Finland
  • S. Badende Département des Eaux, Pêches et Pisciculture, Bujumbura, Burundi
  • D. Chitamwebwa Tanzanian Fisheries Research Institute, Kigoma, Tanzania
  • P. Juvonen University of Jyväskylä, Department of Biological and Environmental Science, Jyväskylä, Finland
  • L. Mwape Department of Fisheries, Mpulungu, Zambia
  • H. Mölsä University of Kuopio, Institute of Applied Biotechnology, Kuopio, Finland
  • N. Mulimbwa Centre de Recherche en Hydrobiologique, Uvira, R.D. Congo
  • K. Salonen University of Jyväskylä, Department of Biological and Environmental Science, Jyväskylä, Finland
  • M. Tarvainen University of Turku, Department of Biology, Turku, Finland
  • K. Vuorio University of Turku, Department of Biology, Turku, Finland

Keywords:

stable isotopes, trophic structure, African Great Lakes

Abstract

Food web structure of the pelagic community in Lake Tanganyika was studied using the stable nitrogen and carbon isotopes 15N and 13C. Size-fractionated seston, zooplankton, shrimps, medusae and fish were sampled in the northern part of Lake Tanganyika. Picoplankton fractions as well as cyanobacteria-dominated nano/microplankton fractions had very low nitrogen isotope signatures typical for nitrogen-fixing organisms. Fractions containing mainly dead organic matter (and associated bacteria) or nano/microalgae (chlorophytes and diatoms) had δ15N 2 to 4‰ higher. The low δ15N signatures of small cyclopoids and shrimps suggest they are feeding on nitrogen-fixing cyanobacteria (picoplankton or larger forms), while the higher δ15N signature of larger copepods suggest mixed feeding on large algae and small zooplankton and/or cyanobacteria. Medusae were slightly enriched in δ15N relative to large copepods. Among fish, the signatures of Stolothrissa and small Lates stappersi suggested feeding on large copepods, while Limnothrissa and larger Lates were slightly more enriched, indicating partial piscivory. The enrichment of 13C between the putative trophic levels (2 to 3‰) was higher, while that of 15N (2 to 3‰) was lower, than usual in isotope studies. Our results indicate that picocyanobacteria and possibly also larger cyanobacteria are important producers in the pelagic food web of Tanganyika.

References

Adams, T. S. and Sterner, R. W. 2000. The effect of dietary nitrogen content on trophic level 15N enrichment. Limnol. Oceanogr., 45: 601–607.

Coenen, E. J., Paffen, P. and Nikomeze, E. 1998. Catch per unit of effort (CPUE) study for different areas and fishing gears of Lake Tanganyika FAO/FINNIDA Research for the Management of the Fisheries on Lake Tanganyika GCP/RAF/271/FIN-TD/80 (En)

Coulter, G. W., ed. 1991. Lake Tanganyika and its Life. British Museum (Natural History), London: Oxford University Press, Oxford.

Craig, H., Dixon, F., Craig, V., Edmond, J. and Coulter, G. 1974. Lake Tanganyika geochemical and hydrographie study: 1973 expedition, Series 75-5 1–83. Publication Scripps Institution of Oceanography.

Dumont, H. J. 1994. Ancient lakes have simplified pelagic food webs. Arch. Hydrobiol. Beih. Ergebn. Limnol., 44: 223–234.

Fry, B. and Sherr, E. 1984. d13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contr. Mar. Sci., 27: 13–47.

Hecky, R. E. and Kling, H. J. 1981. The phytoplankton and protozoa-plankton of the euphotic zone of Lake Tanganyika: Species composition, biomass, chlorophyll content, and spatio-temporal distribution. Limnol. Oceanogr., 26: 548–564.

Hecky, R. E. and Kling, H. J. 1987. Phytoplankton ecology of the great lakes in the rift valleys of Central Africa. Arch. Hydrobiol. Beih. Ergebn. Limnol., 25: 197–228.

Irvine, K. and Waya, R. 1993. The predatory behaviour of the cyclopoid copepod Mesocyclops aequatorialis aequatorialis in Lake Malawi, a deep tropical lake. Verb. Int. Ver. Limnol., 25: 877–881.

Jones, R. I., Grey, J., Sleep, D. and Quarmby, C. 1998. An assessment, using stable isotopes, of the importance of allochthonous carbon sources to the pelagic food web in Loch Ness. Proc. R. Soc. London Ser. B, 265: 105–111.

Langenberg, V. T., Mwape, L. M., Tshibangu, K., Tumba, J.-M., Koelmans, A. A., Roijackers, R., Salonen, K., Sarvala, J. and Mölsä, H. 2002. Comparison of thermal stratification, light attenuation, and chlorophyll-a dynamics between the ends of Lake Tanganyika. Aquat. Ecosyst. Health Manage., 5: 255–265.

Lensu, S. T. 1998. “Stolothrissa tanganicae-ja Limnothrissa miodonkalojen ravinnonvalinta Tanganyika-järvellä”. Finland: Department of Applied Zoology and Veterinary Medicine, University of Kuopio. M.Sc. thesis

Mannini, P., Katonda, I., Kissaka, B. and Verburg, P. 1999. Feeding ecology of Lates stappersii in Lake Tanganyika. Hydrobiologia, 407: 131–139.

Minagawa, M. and Wada, E. 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between A15N and animal age. Geochim. Cosmochim. Acta, 48: 1135–1140.

Mölsä, H., Reynolds, J. E., Coenen, E. J. and Lindqvist, O. V. 1999. Fisheries research towards resource management on Lake Tanganyika. Hydrobiologia, 407: 1–24.

Mölsä, H., Sarvala, J., Badende, S., Chitamwebwa, D., Kanyaru, R., Mulimbwa, M. and Mwape, L. 2002. Ecosystem monitoring in the development of sustainable fisheries in Lake Tanganyika. Aquat. Ecosyst. Health Manage., 5: 267–281.

O'Reilly, C. M., Hecky, R. E., Cohen, A. S. and Plisnier, P-D. 2002. Interpreting stable isotopes in food webs: Recognizing the role of time averaging at different trophic levels. Limnol. Oceanogr., 47: 306–309.

Peterson, B. J. and Fry, B. 1987. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Syst., 18: 293–320.

Plisnier, P-D., Chitamwebwa, D., Mwape, L., Tshibangu, K., Langenberg, V. and Coenen, E. 1999. Limnological annual cycle inferred from physical-chemical fluctuations at three stations of Lake Tanganyika. Hydrobiologia, 407: 45–58.

Post, D. M. 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology, 83: 703–718.

Post, D. M., Pace, M. L. and Hairston, N. G. Jr. 2000. Ecosystem size determines food-chain length in lakes. Nature, 405: 1047–1049.

Salonen, K., Sarvala, J., Järvinen, M., Langenberg, V., Nuottajärvi, M., Vuorio, K. and Chitamwebwa, D. B. R. 1999. Phytoplankton in Lake Tanganyika-vertical and horizontal distribution of in vivo fluorescence. Hydrobiologia, 407: 95–109.

Sarvala, J., Salonen, K., Järvinen, M., Aro, E., Huttula, T., Kotilainen, P., Kurki, H., Langenberg, V., Mannini, P., Peltonen, A., Plisnier, P-D., Vuorinen, L., Mölsä, H. and Lindqvist, O. V. 1999. Trophic structure of Lake Tanganyika: carbon flows in the pelagic food web. Hydrobiologia, 407: 155–179.

Sarvala, J., Tarvainen, M., Salonen, K. and Mölsä, H. 2002. Pelagic food web as the basis of fisheries in Lake Tanganyika: A bioenergetic modeling analysis. Aquat. Ecosyst. Health Manage., 5: 283–292.

Sipura, J., Meili, M., Lagus, A., Sarvala, J. and Ventelä, A.-M. 2002. Changes in Zooplankton nitrogen isotope fractionation induced by nitrogen enrichment. Verb. Int. Ver. Limnol., 28: 770–772.

Vender Zanden, M. J. and Rasmussen, J. B. 2001. Variation in d 15N and d13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr., 46: 2061–2066.

Viherluoto, M. 1999. The food utilisation and diel feeding pattern of shrimps (Atyidae and Palaemonidae) in Lake Tanganyika 52–59. FAO/FINNIDA Researh for the Management of the Fisheries on Lake Tanganyika GCP/RAF/271/FIN-TD/93 (En)

Vuorio, K., Ventelä, A.-M., Sipura, J., Tarvainen, M., Meili, M. and Sarvala, J. 2002. Stable carbon and nitrogen isotopes in lake plankton and seston: variability among 10 fractions, two seasons, and two lakes. Verb. Int. Ver. Limnol., 28: 1396–1399.

Vuorio, K., Nuottajärvi, M., Salonen, K. and Sarvala, J. 2003. Spatial distribution of phytoplankton and picocyanobacteria in Lake Tanganyika, in March-April 1998. Aquat. Ecosyst. Health Manage., 6: 263–278.

Weisse, T. and Stockner, J. G. 1993. Eutrophication: the role of microbial food webs. Mem. 1st. ital. Idrobiol., 52: 133–150.

Published

2003-09-01