Solid phase microextraction fibers for estimating the toxicity of nitroaromatic compounds

Authors

  • J. M. Conder University of North Texas, Department of Biological Sciences, Institute of Applied Sciences, PO Box 310559, Denton, TX 76203, USA
  • G. R. Lotufo U.S. Army Corps of Engineers, Engineer Research and Development Center, CEERD-EP-R, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA
  • A. T. Bowen University of North Texas, Department of Biological Sciences, Institute of Applied Sciences, PO Box 310559, Denton, TX 76203, USA
  • P. K. Turner University of North Texas, Department of Biological Sciences, Institute of Applied Sciences, PO Box 310559, Denton, TX 76203, USA
  • T. W. La Point University of North Texas, Department of Biological Sciences, Institute of Applied Sciences, PO Box 310559, Denton, TX 76203, USA
  • J. A. Steevens U.S. Army Corps of Engineers, Engineer Research and Development Center, CEERD-EP-R, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA

Keywords:

bioavailability, biomimetic device, critical body residues, degradation, dose

Abstract

Solid phase microextraction fibers are useful for investigating bioavailable organic contaminants in complex environmental matrixes such as aquatic sediments. Solid phase microextraction fibers are polymer-coated silica fibers that sorb dissolved organic compounds from water and sediment. We investigated their concentrations as measures of exposure for 2,4,6-trinitrotoluene and its degradation products in acute sediment and water-only toxicity tests with Tubifex tubifex, Chironomus tentans, and Ceriodaphnia dubia. Results from these exposures allowed us to compare solid phase microextraction fibers concentrations to two conventional measures of toxicant dose: external matrix (water, sediment) and internal (organism) concentrations. Because trinitrotoluene degrades within sediment and organisms, doses based on sediment, water, and organism concentrations were calculated using the molar sum of trinitrotoluene and its nitroaromatic degradation products. Among species and matrixes, median lethal doses based on solid phase microextraction fiber and organism concentrations ranged from 12.6 to 55.3 (μmol nitroaromatic per ml polyacrylate and 83.4 to 172.3 nmol nitroaromatic per gram tissue, wet weight, respectively. In contrast to matrix concentrations, which are specific to sediment or water, both organism and solid phase microextraction fiber concentrations appeared to provide measures of dose independent of exposure scenario (sediment or water). Median lethal doses based on fiber concentrations in whole-sediment and water-only Tubifex tubifex toxicity tests were within a factor of 1.1 (18.7 and 21.3 (μmol nitroaromatic per ml polyacrylate, respectively). Median lethal doses based on organism concentrations were within a factor 1.4 for Chironomus tentans exposed in water-only or whole-sediment scenarios (118.0 and 83.4 nmol nitroaromatic per gram tissue, wet weight, respectively). Solid phase microextraction fibers may provide a powerful chemical estimate of exposure with which to understand bioavailability and toxicity of organic compounds to benthic organisms.

References

Bierman, V. J. Jr. 1990. Equilibrium partitioning and biomagnification of organic chemicals in benthic animals. Environ. Sci. Technol., 24: 1407–1412.

Burton, G. A. Jr., Batley, G. E., Chapman, P. M., Forbes, V. E., Smith, E. P., Reynoldson, T., Schlekat, C. E., Besten, P. J. and Bailer, A. J. 2002. A weight-of-evidence framework for assessing sediment (or other) contamination: Improving certainty in the decision-making process. Human Ecol. Risk Assess., 8: 1675–1696.

Chapman, P. M., McDonald, B. G. and Lawrence, G. S. 2002. “Weight-of-evidence issues and frameworks for sediment quality (and other) assessments”. In Human Ecol. Risk Assess. 1489–1515.

Conder, J. M., La Point, T. W., Steevens, J. A. and Lotufo, G. R. 2004. Recommendations for the assessment of 2,4,6-trinitrotoluene toxicity in sediment. Env. Toxicol. Chem., 23: 141–149.

Conder, J. M., La Point, T. W., Lotufo, G. R. and Steevens, J. A. 2003. Nondestructive, minimal-disturbance, direct-burial solid phase microextraction fiber technique for measuring TNT in sediment. Env. Sci. Technol., 37: 1625–1632.

Cuypers, C., Pancras, T., Grotenhuis, T. and Rulkens, W. 2002. The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-β-cyclodextrin and Triton X-100 extraction techniques. Chemosphere, 46: 1235–1245. http://dx.doi.org/10.1016/S0045-6535%2801%2900199-0http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11951991http://www4.infotrieve.com/newmedline/detail.asp?NameID=11951991&Session=&searchQuery=Chemosphere%5BJournal+Name%5D+AND+46%5BVolume%5D+AND+1235%5BPage+Number%5D+AND+2002%5BPublication+Date%5D+AND+Cuypers%5BAuthor+Name%5D&count=1

Dave, G., Nilsson, E. and Wernersson, A.-S. 2000. Sediment and water phase toxicity and UV-activation of six chemicals used in military explosives. Aquat. Ecosystem Health Manage, 3: 291–299.

Di Giulio, R. T., Benson, W. H., Sanders, B. M. and Veld, P. A. 1995. “Biochemical mechanisms: Metabolism, adaptation, and toxicity”. In Fundamentals of Aquatic Toxicology: Effects, Environmental Fate, and Risk Assessment, Edited by: Rand, G. M. pp. 523–561. Washington, DC, , USA: Taylor and Francis.

Dodard, S. G., Renoux, A. Y., Hawari, J., Ampleman, G., Thiboutot, S. and Sunahara, G. I. 1999. Ecotoxicity characterization of dinitrotoluenes and some of their reduced metabolites. Chemosphere, 38: 2071–2079. http://dx.doi.org/10.1016/S0045-6535%2898%2900423-8http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=10101859http://www4.infotrieve.com/newmedline/detail.asp?NameID=10101859&Session=&searchQuery=Chemosphere%5BJournal+Name%5D+AND+38%5BVolume%5D+AND+2071%5BPage+Number%5D+AND+1999%5BPublication+Date%5D+AND+Dodard%5BAuthor+Name%5D&count=1

Green, A., Moore, D. and Farrar, D. 1999. Chronic toxicity of 2,4,6-trinitrotoluene to a marine polychaete and an estuarine amphipod. Environ. Toxicol. Chem., 18: 1783–1790.

Hamilton, M. A., Russo, R. C. and Thurston, R. V. 1977. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Env. Sci. Technol., 11: 714–719.

Hermens, J. L. M., Freidig, A. P., Urrestarazu, RamosE., Vaes, W. H. J., van Loon, W. M. G. M., Verbruggen, E. M. J. and Verhaar, H. J. M. 2001. “Application of negligible depletion solid-phase extraction (nd-SPE) for estimating bioavailability and bioaccumulation of individual chemicals and mixtures”. In Persistent, Bioaccumulative, and Toxic Chemicals II, Assessment and New Chemicals, Edited by: Lipnick, R. L., Jansson, B., Mackay, D. and Petreas, M. pp. 64–74. Washington, DC, , USA: American Chemical Society.

Kraaij, R. H., Tolls, J., Sijm, D., Cornelissen, G., Heikens, A. and Belfroid, A. 2002. Effects of contact time on the sequestration and bioavailability of different classes of hydrophobic organic chemicals to benthic oligochaetes (Tubificidae). Environ. Toxicol. Chem., 21: 752–759. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11951948http://www4.infotrieve.com/newmedline/detail.asp?NameID=11951948&Session=&searchQuery=Environ%2E+Toxicol%2E+Chem%2E%5BJournal+Name%5D+AND+21%5BVolume%5D+AND+752%5BPage+Number%5D+AND+2002%5BPublication+Date%5D+AND+Kraaij%5BAuthor+Name%5D&count=1

Kraaij, R. H., Mayer, P., Busser, F. J. M., Bolscher, M., Seinen, W. and Tolls, J. 2003. Measured pore-water concentrations make equilibrium partitioning work—A data analysis. Environ. Sci. Technol., 37: 268–274. http://dx.doi.org/10.1021/es020116qhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12564897http://www4.infotrieve.com/newmedline/detail.asp?NameID=12564897&Session=&searchQuery=Environ%2E+Sci%2E+Technol%2E%5BJournal+Name%5D+AND+37%5BVolume%5D+AND+268%5BPage+Number%5D+AND+2003%5BPublication+Date%5D+AND+Kraaij%5BAuthor+Name%5D&count=1

Landrum, P. F., Dupuis, W. S. and Kukkonen, J. 1994. Toxicokinetics and the toxicity of sediment-associated pyrene and phenanthrene in Diporeia spp.: Examination of equilibrium-partitioning theory and residue-based effects for assessing hazard. Environ. Toxicol. Chem., 13: 769–1780.

Landrum, P. F., Harkey, G. A. and Kukkonen, J. 1996. “Evaluation of organic contaminants exposure in aquatic organisms: The significance of bioconcentration and bioaccumulation”. In Ecotoxicology: A Hierarchial Treatment, Edited by: Newman, M. C. and Jagoe, H. pp. 85–131. Boca Raton, FL, , USA: Lewis Publishers.

Leslie, H. A., Oosthoek, A. J. P., Busser, J. M., Kraak, M. H. S. and Hermens, J. L. M. 2002a. Biomimetic solid-phase microextraction to predict body residues and toxicity of chemicals that act by narcosis. Environ. Toxicol. Chem., 21: 229–234. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11837229http://www4.infotrieve.com/newmedline/detail.asp?NameID=11837229&Session=&searchQuery=Environ%2E+Toxicol%2E+Chem%2E%5BJournal+Name%5D+AND+21%5BVolume%5D+AND+229%5BPage+Number%5D+AND+2002%5BPublication+Date%5D+AND+Leslie%5BAuthor+Name%5D&count=1

Leslie, H. A., Ter Laak, T. L., Busser, F. J. M., Kraak, M. H. S. and Hermens, J. L. M. 2002b. Bioconcentration of organic chemicals: Is a solid-phase microextraction fiber a good surrogate for biota?. Environ. Sci. Technol., 36: 5399–5404. http://dx.doi.org/10.1021/es0257016http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12521167http://www4.infotrieve.com/newmedline/detail.asp?NameID=12521167&Session=&searchQuery=Environ%2E+Sci%2E+Technol%2E%5BJournal+Name%5D+AND+36%5BVolume%5D+AND+5399%5BPage+Number%5D+AND+2002%5BPublication+Date%5D+AND+Leslie%5BAuthor+Name%5D&count=1

Liste, H.-H. and Alexander, M. 2002. Butanol extraction to predict bioavailability of PAHs in soil. Chemosphere, 46: 1011–1017. http://dx.doi.org/10.1016/S0045-6535%2801%2900165-5http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11999764http://www4.infotrieve.com/newmedline/detail.asp?NameID=11999764&Session=&searchQuery=Chemosphere%5BJournal+Name%5D+AND+46%5BVolume%5D+AND+1011%5BPage+Number%5D+AND+2002%5BPublication+Date%5D+AND+Liste%5BAuthor+Name%5D&count=1

Lotufo, G. R., Farrar, J. D., Inouye, L. S., Bridges, T. S. and Ringelberg, D. B. 2001. Toxicity of sediment-associated nitroaromatic and cyclonitramine compounds to benthic invertebrates. Environ. Toxicol. Chem., 20: 1762–1771. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11491560http://www4.infotrieve.com/newmedline/detail.asp?NameID=11491560&Session=&searchQuery=Environ%2E+Toxicol%2E+Chem%2E%5BJournal+Name%5D+AND+20%5BVolume%5D+AND+1762%5BPage+Number%5D+AND+2001%5BPublication+Date%5D+AND+Lotufo%5BAuthor+Name%5D&count=1

Lu, Y., Wang, Z. and Huckins, J. 2002. Review of the background and application of triolein-containing semipermeable membrane devices in aquatic environmental study. Aquat. Toxicol., 60: 139–153. http://dx.doi.org/10.1016/S0166-445X%2802%2900056-5http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12204593http://www4.infotrieve.com/newmedline/detail.asp?NameID=12204593&Session=&searchQuery=Aquat%2E+Toxicol%2E%5BJournal+Name%5D+AND+60%5BVolume%5D+AND+139%5BPage+Number%5D+AND+2002%5BPublication+Date%5D+AND+Lu%5BAuthor+Name%5D&count=1

Mayer, L. M., Chen, Z., Findlay, R. H., Fang, J., Sampson, S., Self, R. F. L., Jumars, P. A., Quetel, C. and Donard, O. F. X. 1996. Bioavailability of sedimentary contaminants subject to deposit-feeder digestion. Environ. Sci. Technol., 30: 2641–2645.

Mayer, P., Vaes, W. H. J., Wijnker, F., Legierse, K. C. H. M., Kraaij, R. H., Tolls, J. and Hermens, J. L. M. 2000. Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ. Sci. Technol., 34: 5177–5183.

McCarty, L. S., Mackay, D., Smith, A. D., Ozburn, G. W. and Dixon, D. G. 1992. Residue-based interpretation of toxicity and bioconcentration QSARs from aquatic bioassays: Neutral narcotic organics. Environ. Toxicol. Chem., 11: 917–930.

Nipper, M., Carr, R. S., Biedenbach, J., Hooten, R. L. and Miller, K. 2002. Toxicological and chemical assessment of ordinance compounds in marine sediments and porewaters. Mar. Pollut. Bull., 44: 789–806. http://dx.doi.org/10.1016/S0025-326X%2802%2900063-2http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12269482http://www4.infotrieve.com/newmedline/detail.asp?NameID=12269482&Session=&searchQuery=Mar%2E+Pollut%2E+Bull%2E%5BJournal+Name%5D+AND+44%5BVolume%5D+AND+789%5BPage+Number%5D+AND+2002%5BPublication+Date%5D+AND+Nipper%5BAuthor+Name%5D&count=1

Pawliszyn, J. 1997. Solid Phase Microextraction: Theory and Practice, New York, NY, , USA: Wiley-VCH.

Poerschmann, J. and Kopinke, F.-D. 2001. Sorption of very hydrophobic organic compounds (VHOCs) on dissolved humic organic matter (DOM). 2. Measurement of sorption and application of a Flory-Huggins concept to interpret the data. Environ. Sci. Technol., 35: 1142–1148. http://dx.doi.org/10.1021/es0017615http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11347926http://www4.infotrieve.com/newmedline/detail.asp?NameID=11347926&Session=&searchQuery=Environ%2E+Sci%2E+Technol%2E%5BJournal+Name%5D+AND+35%5BVolume%5D+AND+1142%5BPage+Number%5D+AND+2001%5BPublication+Date%5D+AND+Poerschmann%5BAuthor+Name%5D&count=1

Rand, G. M., Wells, P. G. and McCarty, L. S. 1995. “Introduction to Aquatic Toxicology”. In Fundamentals of Aquatic Toxicology: Effects, Environmental Fate, and Risk Assessment, Edited by: Rand, G. M. pp. 3–67. Washington, DC, , USA: Taylor and Francis.

Renoux, A. Y., Sarrazin, M., Hawari, J. and Sunahara, G. I. 2000. Transformation of 2,4,6-trinitrotoluene in soil in the presence of the earthworm Eisenia andrei. Environ. Toxicol. Chem., 19: 1473–1480.

Stahl, J. D. and Aust, S. D. 1995. “Biodegradation of 2,4,6-trinitrotoluene by the white rot fungus Phanerochaete chrysosporium”. In Biodegradation of Nitroaromatic Compounds, Edited by: Spain, J. C. pp. 117–133. New York, NY, , USA: Plenum Press.

Salazar, M. H. and Salazar, S. M. 2000. “A pickle jar is a pickle jar and a fish is a moving target but a fish is not a fat bag and bivalves don't eat pickles”. In 27th Annual Aquatic Toxicity Workshop. 2000, October 1–4, Newfoundland, , Canada: St John's.

Siciliano, S. D., Roy, R. and Greer, C. W. 2000. Reduction in denitrification activity in field soils exposed to long term contamination by 2,4,6-trinitrotoluene (TNT). FEMS Microbiol. Ecol., 32: 61–68. http://dx.doi.org/10.1016/S0168-6496%2800%2900009-Xhttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=10779620http://www4.infotrieve.com/newmedline/detail.asp?NameID=10779620&Session=&searchQuery=FEMS+Microbiol%2E+Ecol%2E%5BJournal+Name%5D+AND+32%5BVolume%5D+AND+61%5BPage+Number%5D+AND+2000%5BPublication+Date%5D+AND+Siciliano%5BAuthor+Name%5D&count=1

Steevens, J. A., Duke, B. M., Lotufo, G. R. and Bridges, T. S. 2002. Toxicity of the explosives 2,4,6-trinitrotoluene, hesxhydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in sediments to Chironomus tentans and Hyalella azteca: Low-dose hormesis and high-dose mortality. Environ. Toxicol. Chem., 21: 1475–1482. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12109749http://www4.infotrieve.com/newmedline/detail.asp?NameID=12109749&Session=&searchQuery=Environ%2E+Toxicol%2E+Chem%2E%5BJournal+Name%5D+AND+21%5BVolume%5D+AND+1475%5BPage+Number%5D+AND+2002%5BPublication+Date%5D+AND+Steevens%5BAuthor+Name%5D&count=1

Sunahara, G. I., Dodard, S., Sarrazin, M., Paquet, L., Hawari, J., Greer, C. W., Ampleman, G., Thiboutot, S. and Renoux, A. Y. 1999. Ecotoxicological characterization of energetic substances using a soil extraction procedure. Ecotox. Environ. Safety, 43B: 138–148.

Swartz, R. C., Schults, D. W., Ozretich, R. J., Lamberson, J. O., Cole, F. A., DeWitt, T. H., Redmond, M. S. and Ferraro, S. P. 1995. ΣPAH: A model to predict the toxicity of field-collected marine sediment contaminated by polynuclear aromatic hydrocarbons. Environ. Toxicol. Chem., 14: 1977–1987.

Thomann, R. V. and Komlos, J. 1999. Model of a biota-sediment accumulation factor for polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem., 18: 1060–1068.

USEPA. 1998. Method 8330A: Nitroaromatics and nitramines by high performance liquid chromatography (HPLC), Washington, DC, , USA: USEPA.

Vaes, W. H. J., Urrestarazu, RamosE., Hamwijk, C., van Holsteijn, I., Blaauboer, B. J., Seinen, W., Verhaar, H. J. M. and Hermens, J. L. M. 1997. Solid phase microextraction as a tool to determine membrane/water partition coefficients and bioavailable concentrations in in vitro systems. Chem. Res. Toxicol., 10: 1067–1072. http://dx.doi.org/10.1021/tx970109thttp://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9348427http://www4.infotrieve.com/newmedline/detail.asp?NameID=9348427&Session=&searchQuery=Chem%2E+Res%2E+Toxicol%2E%5BJournal+Name%5D+AND+10%5BVolume%5D+AND+1067%5BPage+Number%5D+AND+1997%5BPublication+Date%5D+AND+Vaes%5BAuthor+Name%5D&count=1

Vaes, W. H. J., Urrestarazu, RamosE., Verhaar, H. J. M. and Hermens, J. L. M. 1998. Acute toxicity of nonpolar versus polar narcosis: Is there a difference?. Environ. Toxicol. Chem., 17: 1380–1384.

van Loon, W. M., Wijnker, F. G., Verwoerd, M. E. and Hermens, J. L. M. 1996. Quantitative determination of total molar concentrations of bioaccumulable organic micropollutants in water using C18 empore disk and molar detection techniques. Anal. Chem., 68: 2916–2926. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8794926http://www4.infotrieve.com/newmedline/detail.asp?NameID=8794926&Session=&searchQuery=Anal%2E+Chem%2E%5BJournal+Name%5D+AND+68%5BVolume%5D+AND+2916%5BPage+Number%5D+AND+1996%5BPublication+Date%5D+AND+Wijnker%5BAuthor+Name%5D&count=1

van Loon, W. M. G. M., Verwoerd, M. E., Wijnker, F. G., Leeuwen, C. J., Duyn, P., van De Guchte, C. and Hermens, J. L. M. 1997. Estimating total body residues and baseline toxicity of complex organic mixtures in effluents and surface waters. Environ. Toxicol. Chem., 16: 1358–1365.

Verbruggen, E. M. J., Vaes, W. H. J., Parkerton, T. F. and Hermens, J. L. M. 2000. Polyacrylate-coated SPME fibers as a tool to simulate body residues and target concentrations of complex organic mixtures for estimation of baseline toxicity. Environ. Sci. Technol., 34: 324–331.

Verhaar, H. J. M., Busser, F. J. M. and Hermens, J. L. M. 1995. Surrogate parameter for the baseline toxicity content of contaminated water: Simulating the bioconcentration of mixtures of pollutants and counting molecules. Environ. Sci. Technol., 29: 726–734.

Wells, J. B. and Lanno, R. P. 2000. “Passive sampling devices (PSDs) as biological surrogates for estimating bioavailability of organic chemicals in soil”. In Environmental Toxicology and Risk Assessment: Science, Policy, and Standardization—Implications for Environmental Decisions, Edited by: Greenberg, B. M., Hull, R. N., Roberts, M. H. Jr. and Gensemer, R. W. pp. 253–270. West Conshohocken, PA, , USA: American Society for Testing and Materials. Tenth Volume, ASTM STP 1403

West, C. W., Ankley, G. T., Nichols, J. W., Elonen, G. E. and Nessa, D. E. 1997. Toxicity and bioaccumulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin in long-term tests with the freshwater benthic invertebrates Chironomus tentans and Lumbriculus variegatus. Environ. Toxicol. Chem., 16: 1287–1294.

Published

2004-07-01