Organic carbon biogeochemistry of Lake Superior

Authors

  • James B. Cotner Department of Ecology, Evolution and Behavior, 1987 Upper Buford Circle, University of Minnesota, St. Paul, MN 55108
  • Bopaiah A. Biddanda Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Dr. Muskegon, MI 49441
  • Wataru Makino Graduate School of Life Science, Tohoko University, Aramaki Aza Aoba, Sendai, Miyagi 980-8578, Japan
  • Edward Stets Department of Ecology, Evolution and Behavior, 1987 Upper Buford Circle, University of Minnesota, St. Paul, MN 55108

Keywords:

respiration, heterotrophic bacteria, budget

Abstract

We examined the organic carbon budget for the Earth's largest lake, Lake Superior, in the Laurentian Great Lakes. This is a unique, ultra-oligotrophic system with many features similar to the oligotrophic oceanic gyres, such as dominance of microbial biomass and dissolved organic carbon in biogeochemical processes. Photo-autotrophy is the dominant source of reduced organic matter in the lake. Areal rates of primary production are among the lowest measured in any aquatic system, and are likely a result of cold water temperatures and low nutrient concentrations in the lake. Allochthonous riverine organic carbon inputs were estimated at about 10 percent of photo-autotrophic production. Atmospheric carbon deposition has not been measured to any significant extent but we estimate it at 0.16 to 0.41 Tg yr−1 . All together, allochthonous carbon sources provide 13 to 19 percent of photo-autotrophic production. The main loss of organic matter in the lake is through respiration in the water column. Respiration is double all estimated organic carbon sources combined and therefore sources are likely underestimated. Few measurements of photo-autotrophic carbon production have been made and none recently. Nonetheless, most of the production and fluxes in this system pass through the large dissolved organic carbon pool (more than 10 times as large as the particulate organic carbon pool), which is mediated by heterotrophic and autotrophic picoplanktonic microbial flora. Improved understanding of dissolved organic carbon pools and dynamics is critical for constraining carbon flux in ultra-oligotrophic Lake Superior.

References

Amon, R. M. W. and Benner, R. 1996. Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochem. Cosmochim. Acta, 60: 1783–1792.

Anesio, A. M., Denward, C. M. T., Tranvik, L. J. and Graneli, W. 1999. Decreased bacterial growth on vascular plant detritus due to photochemical modification. Aquat. Microb. Ecol., 17: 159–165.

Argyilan, E. P. and Forman, S. L. 2003. Lake level response to seasonal climatic variability in the Lake Michigan-Huron system from 1920 to 1995. J. Great Lakes Res., 29: 488–500.

Assel, R. A. and Robertson, D. M. 1995. Changes in winter air temperatures near Lake Michigan, 1851–1993, as determined from regional lake-ice records. Limnol. Oceanogr., 40: 165–176.

Baines, S. B. and Pace, M. L. 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol. Oceanogr., 36: 1078–1090.

Baines, S. B., Pace, M. L. and Karl, D. M. 1994. Why does the relationship between sinking flux and planktonic primary production differ between lakes and oceans?. Limnol. Oceanogr., 39: 213–226.

Baker, J. E. and Eisenreich, S. J. 1989. PCBs and PAHs as tracers of particulate dynamics in large lakes. J. Great Lakes Res.,, 15(1): 84–103.

Baker, J. E., Eisenreich, S. J. and Eadie, B. J. 1991. Sediment trap fluxes, and benthic recycling of organic carbon, polycyclic aromatic hydrocarbons, and polychlorobiphenyl congeners in Lake Superior. Environ. Sci. Technol., 25: 500–509.

Benner, R. and Biddanda, B. 1998. Photochemical transformations of surface and deep marine dissolved organic matter: effects on bacterial growth. Limnol. Oceanogr., 43: 1373–1378.

Bennett, E. B. 1978. Characteristics of the thermal regime of Lake Superior. J. Great Lakes Res., 4: 310–319.

Bennett, E. B. 1986. The nitrifying of Lake Superior. Ambio, 15: 272–275.

Biddanda, B. A. and Cotner, J. B. 2002. Love handles in aquatic ecosystems: the role of dissolved organic carbon drawdown, resuspended sediments, and terrigenous inputs in the carbon balance of Lake Michigan. Ecosystems, 5: 431–445. http://dx.doi.org/10.1007%2Fs10021-002-0163-z

Biddanda, B. A. and Cotner, J. B. 2003. Enhancement of dissolved organic matter bioavailability by sunlight and its role in the carbon cycle of Lakes Superior and Michigan. J. Great Lakes Res., 29: 228–241.

Biddanda, B., Ogdahl, M. and Cotner, J. 2001. Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. Limnol. Oceanogr., 46: 730–739.

Bolsenga, S. J. and Norton, D. C. 1993. Great Lakes air temperature trends for land stations, 1901–1987. J. Great Lakes Res., 19: 379–388.

Booth, R. K., Jackson, S. T. and Thompson, T. A. 2002. Paleoecology of a northern Michigan lake and the relationship among climate, vegetation, and Great Lakes water levels. Quater. Res., 57: 120–130. http://dx.doi.org/10.1006%2Fqres.2001.2288

Brooks, A. S. and Zastrow, J. C. 2002. The potential influence of climate change on offshore primary production in Lake Michigan. J. Great Lakes Res., 28: 597–607.

Bushaw-Newton, K. L. and Moran, M. A. 1999. Photochemical formation of biologically available nitrogen from dissolved humic substances in coastal marine systems. Aquat. Microb. Ecol., 18: 285–292.

Caraco, N. F. 1995. “Influence of human populations on phosphorus transfers to aquatic systems: a regional scale study using large rivers”. In Phosphorus in the Global Environment: Transfer, Cycles and Management, Edited by: Tiessen, H. pp. 235–244. NY: Wiley.

Carlson, C. A., Ducklow, H. W., Hansell, D. A. and Smith, W. O. 1998. Organic carbon partitioning during spring phytoplankton blooms in the Ross Sea polynya and the Sargasso Sea. Limnol. Oceanogr., 43: 375–386.

Carlson, C. A., Ducklow, H. W. and Michaels, A. F. 1994. Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea. Nature, 371: 405–408. http://dx.doi.org/10.1038%2F371405a0

Carpenter, S., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N. and Smith, V. H. 1998. Nonpoint pollution of surface water with phosphorus and nitrogen. Protein Sci., 3: 2–12.

Cho, B. C. and Azam, F. 1988. Major role of bacteria in biogeochemical fluxes in the ocean's interior. Nature, 332: 441–442. http://dx.doi.org/10.1038%2F332441a0

Cole, J. J., Caraco, N. F., Kling, G. W. and Kratz, T. K. 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science, 265: 1568–1570.

Cotner, J. and Heath, R. 1990. Iron redox effects on photosensitive phosphorus release from dissolved humic materials. Limnol. Oceanogr., 35: 1175–1181.

Cotner, J. B. and Biddanda, B. A. 2002. Small players, large role: microbial influence on auto-heterotrophic coupling and biogeochemical processes in aquatic ecosystems. Ecosystems, 5: 105–121. http://dx.doi.org/10.1007%2Fs10021-001-0059-3

Cotner, J. B., Johengen, T. H. and Biddanda, B. A. 2000. Intense winter heterotrophic production stimulated by benthic resuspension. Limnol. Oceanogr., 45(7): 1672–1676.

Daily, G. C., Söderqvist, T., Aniyar, S., Arrow, K., Dasgupta, P., Ehrlich, P. R., Folke, C., Jansson, A., Jansson, B.-O., Kautsky, N., Levin, S., Lubchenco, J., Mäler, K.-G., Simpson, D., Starrett, D., Tilman, D. and Walker, B. 2000. The value of nature and the nature of value. Science, 289: 395–396. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=10939949http://www4.infotrieve.com/newmedline/detail.asp?NameID=10939949&Session=&searchQuery=Science%5BJournal+Name%5D+AND+289%5BVolume%5D+AND+395%5BPage+Number%5D+AND+2000%5BPublication+Date%5D+AND+Daily%5BAuthor+Name%5D&count=1http://dx.doi.org/10.1126%2Fscience.289.5478.395

del Giorgio, P. A. and Duarte, C. M. 2002. Respiration in the open ocean. Nature, 420: 379–384. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12459775http://www4.infotrieve.com/newmedline/detail.asp?NameID=12459775&Session=&searchQuery=Nature%5BJournal+Name%5D+AND+420%5BVolume%5D+AND+379%5BPage+Number%5D+AND+2002%5BPublication+Date%5D+AND+Duarte%5BAuthor+Name%5D&count=1http://dx.doi.org/10.1038%2Fnature01165

del Giorgio, P. A., Cole, J. J. and Cimbleris, A. 1997. Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems. Nature, 385: 148–151. http://dx.doi.org/10.1038%2F385148a0

Duarte, C. M. and Agusti, S. 1998. The CO{-2} balance of unproductive aquatic ecosystems. Science, 281: 234–236. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9657712http://www4.infotrieve.com/newmedline/detail.asp?NameID=0009657712&Session=&searchQuery=Science%5BJournal+Name%5D+AND+281%5BVolume%5D+AND+234%5BPage+Number%5D+AND+1998%5BPublication+Date%5D+AND+Duarte%5BAuthor+Name%5D&count=1http://dx.doi.org/10.1126%2Fscience.281.5374.234

Duce, R. A. 1986. “The impact of atmospheric nitrogen, phosphorus and iron species on marine biological productivity”. In The Role of Air Sea Exchange in Geochemical Cycling, Edited by: Buat-Menard, P. pp. 497–529. Norwell, MA: D. Reidel.

Dymond, J., Collier, R., McManus, J. and Larson, G. L. 1996. Unbalanced particle flux budgets in Crater Lake, Oregon: implications for edge effects and sediment focusing in lakes. Limnol. Oceanogr., 41: 732–743.

Eadie, B. J., Chambers, R. L., Gardner, W. S. and Bell, G. L. 1984. Sediment trap studies in Lake Michigan: resuspension and chemical fluxes in the southern basin. J. Great Lakes Res., 10: 307–321.

Eadie, B. J., Schwab, D. J., Assel, R. A., Hawley, N., Lansing, M. B., Miller, C. S., Morehead, N. R., Robbins, J. A., Van Hoof, P. L., Leshkevich, G. A., Johengen, T. H., Lavrentyev, P. and Holland, R. E. 1996. Development of recurrent coastal plume in Lake Michigan observed for first time. Eos, Trans. Amer. Geophys. Union, 77: 337–338.

Elser, J. J., Dobberfuhl, D. R., MacKay, N. A. and Schampel, J. H. 1996. Organism size, life history, and N:P stoichiometry: toward a unified view of cellular and ecosystem processes. Bioscience, 46: 674–684.

El-Shaarawi, A. and Munawar, M. 1978. Statistical evaluation of the relationships between phytoplankton biomass, chlorophyll {Ia}, and primary production in Lake Superior. J. Great Lakes Res., 4: 443–455.

Fahnenstiel, G. L., Beckmann, C., Lohrenz, S., Millie, D., Schofeld, O. and McCormick, M. 2002. Standard Niskin and Van Dorn bottles inhibit phytoplankton photosynthesis in Lake Michigan. Verh. Internat. Verein. Limnol., 28: 376–380.

Fahnenstiel, G. L., Krause, A., McCormick, M. J., Carrick, H. and Schelske, C. L. 1998. The structure of the planktonic food-web in the St. Lawrence Great Lakes. J. Great Lakes Res., 24: 531–554.

Fee, E. J., Shearer, J. A., DeBruyn, E. R. and Schindler, E. U. 1992. Effects of lake size on phytoplankton photosynthesis. Can. J. Fish. Aquat. Sci., 49: 2445–2459.

Fiala, M. and Delille, D. 1992. Variability and interactions of phytoplankton and bacterioplankton in the Antarctic neritic area. Mar. Ecol. Prog. Ser., 89: 135–146.

Fogg, G. E. 1983. The ecological significance of extracellular products of phytoplankton photosynthesis. Bot. Mar., 26: 3–14.

Granéli, W., Lindell, M. and Tranvik, L. 1996. Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnol. Oceanogr., 42(4): 698–706.

Guildford, S. J. and Hecky, R. E. 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship?. Limnol. Oceanogr., 45: 1213–1223.

Hecky, R. E. 2000. A biogeochemical comparison of Lakes Superior and Malawi and the limnological consequences of an endless summer. Aquat. Ecosyst Health Manage., 3: 23–33. http://dx.doi.org/10.1016%2FS1463-4988%2899%2900064-0

Hecky, R. E. and Kilham, P. 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence. Limnol. Oceanogr., 33: 796–822.

Hedges, J. I., Keil, R. G. and Benner, R. 1997. What happens to terrestrial organic matter in the ocean?. Org. Geochem., 27: 195–212. http://dx.doi.org/10.1016%2FS0146-6380%2897%2900066-1

Herdendorf, C. E. 1990. “Distribution of the world's large lakes”. In Large Lakes, Edited by: Tilzer, M. M. and Serruya, C. pp. 3–38. NY: Springer-Verlag.

Herut, B., Collier, R. and Krom, M. D. 2002. The role of dust in supplying nitrogen and phosphorus to the Southeast Mediterranean. Limnol. Oceanogr., 47: 870–878.

Hornbuckle, K. C., Sweet, C. W., Pearson, R. F., Swackhamer, D. L. and Eisenreich, S. J. 1995. Assessing annual water air fluxes of polychlorinated biphenyls in Lake Michigan. Environ. Sci. Technol., 29: 869–877.

Jeremiason, J. D., Hornbuckle, K. C. and Eisenreich, S. J. 1994. PCBs in Lake Superior, 1978–1992: decreases in water concentrations reflect loss by volatilization. Environ. Sci. Technol., 38: 903–914.

Jerome, J. H. and Bukata, R. P. 1998. Tracking the propagation of solar ultraviolet radiation: dispersal of ultraviolet photons in inland waters. J. Great Lakes Res., 24: 666–680.

Jickells, T. D. 1998. Nutrient biogeochemistry of the coastal zone. Science, 281: 217–222. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=9660744http://www4.infotrieve.com/newmedline/detail.asp?NameID=9660744&Session=&searchQuery=Science%5BJournal+Name%5D+AND+281%5BVolume%5D+AND+217%5BPage+Number%5D+AND+1998%5BPublication+Date%5D+AND+Jickells%5BAuthor+Name%5D&count=1http://dx.doi.org/10.1126%2Fscience.281.5374.217

Johnson, T. C., Evans, J. E. and Eisenreich, S. J. 1982. Total organic carbon in Lake Superior USA, Canada: sediments comparisons with hemi pelagic and pelagic marine environments. Limnol. Oceanogr., 27: 481–491.

Karl, D. M., Hebel, D. V., Bjorkman, K. and Letelier, R. M. 1998. The role of dissolved organic matter release in the productivity of the oligotrophic North Pacific Ocean. Limnol. Oceanogr., 43: 1270–1286.

Kemp, A. L. W., Dell, C. I. and Harper, N. S. 1978. Sedimentation rates and a sediment budget for Lake Superior. J. Great Lakes Res., 4: 276–287.

Keough, J. R., Sierszen, M. E. and Hagley, C. A. 1996. Analysis of a Lake Superior coastal food web with stable isotope techniques. Limnol. Oceanogr., 41: 136–146.

Kieber, D. J., McDaniel, J. and Mopper, K. 1989. Photochemical source of biological substrates in sea water: implications for carbon cycling. Nature, 341: 637–639.

Klump, J. V., Paddock, R., Remsen, C. C., Fitzgerald, S., Boraas, M. and Anderson, P. 1989. Variations in sediment accumulation rates and the flux of labile organic matter in eastern Lake Superior basins. J. Great Lakes Res., 15(1): 104–122.

Lefevre, D., Bentley, T. L., Robinson, C., Blight, S. P. and Williams, P. J. L. 1994. The temperature response of gross and net community production and respiration in time-varying assemblages of temperate marine micro-plankton. J. Exp. Mar. Biol. Ecol., 184: 201–215.

Lehman, J. T. 2002. Mixing patterns and plankton biomass of the St. Lawrence Great Lakes under climate change scenarios. J. Great Lakes Res., 28: 583–596.

Lenters, J. D. 2001. Long-term trends in the seasonal cycle of Great Lakes water levels. J. Great Lakes Res., 27: 342–353.

Lindell, M. J., Graneli, W. and Tranvik, L. J. 1995. Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter. Limnol. Oceanogr., 40: 195–199.

Maier, W. J. and Swain, W. R. 1978. Lake Superior organic carbon budget. Water Res., 12: 403–412.

Makino, W., Cotner, J. B., Sterner, R. W. and Elser, J. 2003. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Funct. Ecol., 17: 121–130.

Matheson, D. H. and Munawar, M. 1978. Lake Superior basin and its development. J. Great Lakes Res., 4: 249–263.

McCarthy, M., Pratum, T., Hedges, J. and Benner, R. 1997. Chemical composition of dissolved organic nitrogen in the ocean. Nature, 390: 150–154.

McCormick, M. G. and Fahnenstiel, G. L. 1999. Recent climatic trends in nearshore water temperatures in the St. Lawrence Great Lakes. Limnol. Oceanogr., 44: 530–540.

McManus, J., Heinen, E. A. and Baehr, M. M. 2003. Hypolimnetic oxidation rates in Lake Superior: role of dissolved organic material on the lake's carbon budget. Limnol. Oceanogr., 48: 1624–1632.

Meybeck, M. 1982. Carbon, nitrogen, and phosphorus transport by world rivers. Amer. J. Sci., 287: 401–450.

Miles, C. J. and Brezonik, P. L. 1981. Oxygen consumption in humic-colored waters by a photochemical ferrous-ferric catalytic cycle. Environ. Sci. Technol., 15: 1089–1095.

Miller, W. L. 1998. “Effects of UV radiation on aquatic humus: photochemical principles and experimental considerations”. In Aquatic Humic Substances: Ecology and Biogeochemistry, Edited by: Hessen, D. O. and Tranvik, L. J. pp. 125–143. NY: Springer-Verlag.

Miller, W. L. and Zepp, R. G. 1995. Photochemical production of dissolved inorganic carbon from terrestrial organic matter: significance to the oceanic organic carbon cycle. Geophy Res. Let., 22(4): 417–420.

Mopper, K. and Kieber, D. J. 2000. “Marine photochemistry and its impact on carbon cycling”. In The Effects of UV Radiation in the Marine Environment, Edited by: deMora, S. J., Demers, S. and Vernet, M. pp. 101–129. UK: Cambridge University Press.

Moran, M. A. and Zepp, R. G. 1997. Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter. Limnol. Oceanogr., 42: 1307–1316.

Moran, M. A., Sheldon, W. M. J. and Zepp, R. G. 2000. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol. Oceanogr., 45: 1254–1264.

Mortsch, L. D. and Quinn, F. H. 1996. Climate change scenarios for Great Lakes Basin ecosystem studies. Limnol. Oceanogr., 41(5): 903–911.

Munawar, M. and Munawar, I. F. 1978. Phytoplankton of Lake Superior 1973. J. Great Lakes Res., 4: 415–442.

Nicholls, K. H. 1999. Effects of temperature and other factors on summer phosphorus in the Inner Bay of Quinte, Lake Ontario: implications for climate warming. J. Great Lakes Res., 25(2): 250–262.

Obernosterer, I., Semper, R. and Herndl, G. J. 2001. Ultraviolet radiation induces reversal of the bioavailability of DOM to marine bacterioplankton. Aquat. Microb. Ecol., 24: 61–68.

Ogawa, H., Amagai, Y., Koike, I., Kaiser, K. and Benner, R. 2001. Production of refractory dissolved organic matter by bacteria. Science, 292: 917–920. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11340202http://www4.infotrieve.com/newmedline/detail.asp?NameID=11340202&Session=&searchQuery=Science%5BJournal+Name%5D+AND+292%5BVolume%5D+AND+917%5BPage+Number%5D+AND+2001%5BPublication+Date%5D+AND+Ogawa%5BAuthor+Name%5D&count=1

Opsahl, S. and Benner, R. 1998. Photochemical reactivity of dissolved lignin in river and ocean waters. Limnol. Oceanogr., 43: 1297–1304.

Ostrom, N. E., Long, D. T., Bell, E. M. and Beals, T. 1998. The origin and cycling of particulate and sedimentary organic matter and nitrate in Lake Superior. Chem. Geol., 152: 13–28.

Pakulski, J. D., Benner, R., Amon, R., Eadie, B. and Whitledge, T. 1995. Community metabolism and nutrient cycling in the Mississippi River plume: evidence for intense nitrification at intermediate salinities. Mar. Ecol. Prog. Ser., 117: 207–218.

Phillips, D. W. 1978. Environmental climatology of Lake Superior. J. Great Lakes Res., 4: 288–309.

Pomeroy, L. R. and Wiebe, W. J. 1988. Energetics of microbial food webs. Hydrobiologia, 159: 7–18.

Pomeroy, L. R., Wiebe, W. J., Deibel, D., Thompson, R. J., Rowe, G. T. and Pakulski, J. D. 1991. Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom. Mar. Ecol. Prog. Ser., 75: 143–159.

Raymond, P. A. and Bauer, J. E. 2001. Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. Nature, 409: 497–500. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11206542http://www4.infotrieve.com/newmedline/detail.asp?NameID=11206542&Session=&searchQuery=Nature%5BJournal+Name%5D+AND+409%5BVolume%5D+AND+497%5BPage+Number%5D+AND+2001%5BPublication+Date%5D+AND+Raymond%5BAuthor+Name%5D&count=1

Rhee, G. and Gotham, I. 1981. The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation. Limnol. Oceanogr., 26: 635–648.

Ridame, C. and Guieu, C. 2002. Saharan input of phosphate to the oligotrophic water of the open western Mediterranean Sea. Limnol. Oceanogr., 47: 856–869.

Rivkin, R. B. and Legendre, L. 2001. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science, 291: 2398–2400. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11264533http://www4.infotrieve.com/newmedline/detail.asp?NameID=11264533&Session=&searchQuery=Science%5BJournal+Name%5D+AND+291%5BVolume%5D+AND+2398%5BPage+Number%5D+AND+2001%5BPublication+Date%5D+AND+Rivkin%5BAuthor+Name%5D&count=1

Robertson, D. M. 1997. Regionalized loads of sediment and phosphorus to Lakes Michigan and Superior—High flow and long-term average. J. Great Lakes Res., 23: 416–439.

Scavia, D. and Laird, G. A. 1987. Bacterioplankton in Lake Michigan: dynamics, controls, and significance to carbon flux. Limnol. Oceanogr., 32: 1017–1033.

Schelske, C. L., Feldt, L. E., Santiago, M. A. and Stoermer, E. F. 1972. Nutrient enrichment and its effect on phytoplankton production and species composition in Lake Superior. Proc. 15th Conf. Great Lakes Res, : 149–165.

Sickman, J. O., Melack, J. M. and Clow, D. W. 2003. Evidence for nutrient enrichment of high-elevation lakes in the Sierra Nevada, California. Limnol. Oceanogr., 48: 1885–1892.

Smith, R. E. H., Furgal, J. A., Charlton, M. N., Greenberg, B. M., Hiriart, V. and Marwood, C. 1999a. Can. J. Fish. Aquat. Sci., 56: 1351–1361. Attenuation of ultraviolet radiation in a large lake with low dissolved organic matter concentrations

Smith, V. H., Tilman, G. D. and Nekola, J. C. 1999b. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut., 100: 179–196. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=15093117http://www4.infotrieve.com/newmedline/detail.asp?NameID=15093117&Session=&searchQuery=Environ%2E+Pollut%2E%5BJournal+Name%5D+AND+100%5BVolume%5D+AND+179%5BPage+Number%5D+AND+1999%5BPublication+Date%5D+AND+Smith%5BAuthor+Name%5D&count=1

Sousounis, P. J. and Grover, E. K. 2002. Potential future weather patterns over the Great Lakes region. J. Great Lakes Res., 28: 496–520.

Sterner, R. W., Smutka, T. M., McKay, R. M. L., Xiaoming, Q. and Brown, E. T. 2004. Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnol. Oceanogr., 49: 495–507.

Strandberg, B., Dodder, N. G., Basu, I. and Hites, R. A. 2001. Concentrations and spatial variations of polybrominated diphenyl ethers and other organohalogen compounds in Great Lakes air. Environ. Sci. Technol., 35: 1078–1083. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=11347917http://www4.infotrieve.com/newmedline/detail.asp?NameID=11347917&Session=&searchQuery=Environ%2E+Sci%2E+Technol%2E%5BJournal+Name%5D+AND+35%5BVolume%5D+AND+1078%5BPage+Number%5D+AND+2001%5BPublication+Date%5D+AND+Strandberg%5BAuthor+Name%5D&count=1

Tranvik, L. and Kokalj, S. 1998. Decreased biodegradability of algal DOC due to interactive effects of UV radiation and humic matter. Aquat. Microb. Ecol., 14: 301–307.

Vitousek, P. M., Mooney, H. A., Lubchenco, J. and Melillo, J. M. 1997. Human domination of Earth's ecosystems. Science, 277: 494–499.

Vollenweider, R. A., Munawar, M. and Stadelmann, P. 1974. A comparative review of phytoplankton and primary production in the Laurentian Great Lakes. J. Fish. Res. Bd. Canada, 3: 739–762.

Weiler, R. R. 1978. Chemistry of Lake Superior. J. Great Lakes Res., 4: 370–385.

Wetzel, R. G. 2001. Limnology: Lake and River Ecosystems , 3rd ed., NY: Academic Press.

Wetzel, R. G., Hatcher, P. G. and Bianchi, T. S. 1995. Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol. Oceanogr., 40(8): 1369–1380.

Willey, J. D., Kieber, R. J., Eyman, M. S. and Avery, G. B. 2000. Rainwater dissolved organic carbon: concentrations and global flux. Global Biogeochem. Cyc., 14: 139–148.

Williams, P. M. and Druffel, E. R. M. 1987. Radiocarbon in dissolved organic matter in the North Pacific Ocean. Nature, 330: 246–248.

Published

2004-10-01