Paleolimnological assessment of human-induced impacts on Walden Pond (Massachusetts, USA) using diatoms and stable isotopes

Authors

  • Dörte Köster Paleolimnology-Paleoecology Laboratory, Centre d'études nordiques, Department of Geography, Université Laval, Québec, Québec, G1K 7P4, Canada
  • Reinhard Pienitz Paleolimnology-Paleoecology Laboratory, Centre d'études nordiques, Department of Geography, Université Laval, Québec, Québec, G1K 7P4, Canada
  • Brent B. Wolfe Department of Geography and Environmentals Studies, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
  • Sylvia Barry Harvard University, Harvard Forest, Post Office Box 68, Petersham, Massachusetts, 01366-0068, USA
  • David R. Foster Harvard University, Harvard Forest, Post Office Box 68, Petersham, Massachusetts, 01366-0068, USA
  • Sushil S. Dixit Environment Canada, National Guidelines & Standards Office, 351 St. Joseph Blvd., 8th Floor, Ottawa, Ontario, K1A 0H3, Canada

Keywords:

New England, chrysophytes, pH, total phosphorus, land-use history

Abstract

Multi-proxy analysis of a sediment core spanning 1600 years from Walden Pond, Massachusetts (USA), reveals substantial changes in the nutrient status over the past ∼250 years resulting from anthropogenic impacts on the lake and watershed. Following a period of environmental stability from about 430 AD to 1750 AD, the abundance of the diatom Cyclotella stelligera increased, the chrysophyte cyst to diatom ratio decreased, organic content declined, bulk organic δ13C decreased, and bulk organic δ15N increased. These changes coincided with logging in the watershed, and are mainly attributed to an increase in detrital input of inorganic sediment and delivery of dissolved soil decomposition products from the watershed. With the beginning of intensive recreational development of Walden Pond in the early 20th century, oligotrophic diatom species were largely replaced by disturbance indicators and the diatom-inferred lake pH increased by 0.5 units, while the bulk organic carbon and nitrogen stable isotope composition markedly shifted to lower and higher values, respectively. These changes reflect inorganic inputs from erosion related to trails, beaches, and construction, as well as increased nutrient inputs by wastewater seepage into groundwater and extensive recreational usage. Diatom-inferred total phosphorus increased only slightly, probably because oligotrophic species still persist during spring and autumn, when Walden Pond has lower nutrient concentrations due to reduced recreational activity. During the last 25 years, diatom assemblages stabilized, suggesting that management measures have been effective in reducing the rate of eutrophication. Notably, the changes observed over the past 250 years are well beyond the range of natural variability of the past 1600 years, yet the pre-disturbance record provides a useful target for developing additional restoration and conservation measures to ensure future environmental protection of this historical site.

References

Baystate Environmental Consultants, Inc. 1995. Study of trophic level conditions of Walden Pond, Concord, Massachusetts, East Longmeadow, MA: Commonwealth of Massachusetts, Department of Environmental Management, Division of Resource Conservation.

Barosh, P. J. 1993. “Bedrock Geology of the Walden Woods”. In Thoreau's World and Ours: a Natural Legacy, Edited by: Schofield, E. A. and Baron, R. C. 212–259. Golden, Colorado: North American Press.

Bennett, K. D. 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytol., 132: 155–170.

Bennion, H., Monteith, D. and Appleby, P. 2000. Temporal and geographical variation in lake trophic status in the English Lake District: evidence from (sub)fossil diatoms and aquatic macrophytes. Freshwat. Biol., 45: 394–412. [CROSSREF][CROSSREF][CSA]

Binford, M. W. 1990. Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. J. Paleolim., 3: 253–267. [CROSSREF][CROSSREF][CSA]

Birks, H. J. B., Line, J. M., Juggins, S., Stevenson, A. C. and ter Braak, C. J. F. 1990. Diatoms and pH reconstruction. Philos. T. Roy. Soc. B, 327: 263–278.

Boutton, T. W. 1991. “Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments”. In Carbon Isotope Techniques, Edited by: Coleman, D. C. and Fry, B. 173–185. New York: Elsevier.

Brenner, M., Whitmore, T. J., Curtis, J. H., Hodell, D. A. and Schelske, C. L. 1999. Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. J. Paleolimn., 22: 205–221. [CROSSREF][CROSSREF][CSA]

Brugam, R. B. 1978. Human disturbance and the historical development of Linsley Pond. Ecology, 59: 19–36.

Brugam, R. B. and Vallarino, J. 1989. Paleolimnological investigation of human disturbance in Western Washington lakes. Arch. Hydrobiol., 116: 129–159. [CSA]

Camburn, K. E. and Charles, J. C. 2000. Diatoms of Low-alkalinity Lakes in the northeastern United States, Philadelphia: The Academy of Natural Sciences of Philadelphia.

Camburn, K. E., Kingston, J. C. and Charles, D. F. 1984–86. PaleoecologicaI Investigation of Recent Lake Acidification, PIRLA Diatom Iconograph, Bloomington, , USA: Indiana University.

Carignan, R., D'Arcy, P. and Lamontagne, S. 2000. Comparative impacts of fire and forest harvesting on water quality in Boreal Shield lakes. Can. J. Fish. Aquat. Sci., 57: 105–117. [CROSSREF][CROSSREF][CSA]

Clerk, S., Hall, R., Quinlan, R. and Smol, J. P. 2000. Quantitative inferences of past hypolimnetic anoxia and nutrient levels from a Canadian Precambrian Shield lake. J. Paleolim., 23: 319–336. [CROSSREF][CROSSREF][CSA]

Colman, J. A. and Friesz, P. J. 2001. Geohydrology and Limnology of Walden Pond, Concord, Massachusetts, U. S. Geological Survey. Water-Resources Investigations Report 01–4137 Northborough, MA

Davis, R. B., Anderson, D. S., Norton, S. A. and Whiting, M. C. 1994. Acidity of twelve northern New England (U. S. A.) lakes in recent centuries. J. Paleolim., 12: 103–154. [CROSSREF][CROSSREF][CSA]

Davis, R. B. and Norton, S. A. 1978. Paleolimnologic studies of human impact on lakes in the United States, with emphasis on recent research in New England. Pol. Arch. Hydrobiol., 25: 99–115.

Dean, W. E. Jr. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. Sediment. Petrol., 44: 242–248.

Deevey, E. S. Jr. 1942. A re-examination of Thoreau's “Walden”. Q. Rev. Biol., 17: 1–11. [CROSSREF][CROSSREF]

Dixit, S. S., Smol, J. P., Charles, D. F., Hughes, R. M., Paulsen, S. G. and Collins, G. B. 1999. Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms. Can. J. Fish. Aquat. Sci., 56: 131–152. [CROSSREF][CROSSREF][CSA]

Engstrom, D. R., Swain, E. B. and Kingston, J. C. 1985. A paleolimnological record of human disturbance from Harvey's Lake, Vermont: geochemistry, pigments and diatoms. Freshwat. Biol., 15: 261–288. [CSA]

Faegri, K. and Iversen, J. 1975. Textbook of Pollen Analysis, , 3rd edition, Denmark: Hafner Press.

Fallu, M. -A., Allaire, N. and Pienitz, R. 2000. “Freshwater diatoms from northern Québec and Labrador (Canada). Bibliotheca Diatomologica”. vol. 45, Berlin, Stuttgart J. Cramer

Foster, D. R. 1995. “Land-use history and four hundred years of vegetation change in New England”. In Global Land Use Change. A Perspective from the Columbian Encounter, Edited by: Turner, B. L. 253–321. Madrid: Consejo Superior de Investigaciones Cientificas.

Francis, D. R. and Foster, D. R. 2001. Response of small New England ponds to historic land use. Holocene, 11: 301–311. [CROSSREF][CROSSREF][CSA]

Fritz, S. C., Kingston, J. C. and Engstrom, D. R. 1993. Quantitative trophic reconstruction from sedimentary diatom assemblages: a cautionary tale. Freshwat. Biol., 30: 1–23. [CSA]

Hall, R. I. and Smol, J. P. 1999. “Diatoms as indicators of lake eutrophication”. In The Diatoms: Applications for the Environmental and Earth Sciences, Edited by: Stoermer, E. F. and Smol, J. P. 128–168. Cambridge: Cambridge University Press.

Herczeg, A. L., Smith, A. K. and Dighton, J. C. 2001. A 120 year record of changes in nitrogen and carbon cycling in Lake Alexandrina, South Australia: C:N, δ15N and δ13C in sediments. Appl. Geochem., 16: 73–84. [CROSSREF][CROSSREF][CSA]

Hilfinger, M. F., Mullins, H. T., Burnett, A. and Kirby, M. E. 2001. A 2500 year sediment record from Fayetteville Green Lake, New York: evidence for anthropogenic impacts and historic isotope shift. J. Paleolim., 26: 293–305. [CROSSREF][CROSSREF][CSA]

Hodell, D. A. and Schelske, C. L. 1998. Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol. Oceanogr., 43: 200–214. [CSA]

Interlandi, S. J., Kilham, S. S. and Theriot, E. C. 1999. Responses of phytoplankton to varied resource availability in large lakes of the Greater Yellowstone Ecosystem. Limnol. Oceanogr., 44: 668–682. [CSA]

Juggins, S. 2003. “C2 User Guide”. In Software for ecological and paleoecological data analysis and visualisation, Newcastle upon Tyne, UK: University of Newcastle.

Kaushal, S. and Binford, M. W. 1999. Relationship between C: N ratios of lake sediments, organic matter sources, and historical deforestation in Lake Pleasant, Massachusetts, USA. J. Paleolim., 22: 439–442. [CROSSREF][CROSSREF][CSA]

Krammer, K. and Lange-Bertalot, H. 1986–1991. Bacillariophyceae, Stuttgart/Jena/New York: Gustav Fischer Verlag.

Köster, D., Racca, J. M. J. and Pienitz, R. 2004. Diatom-based inference models and reconstructions revisited: methods, transformations, and species response models. J. Paleolim., 32: 233–246. [CROSSREF][CROSSREF]

Laing, T. E., Rühland, K. and Smol, J. P. 1999. Past environmental and climatic changes related to tree-line shifts inferred from fossil diatoms from a lake near the Lena River Delta, Siberia. Holocene, 9: 547–557. [CROSSREF][CROSSREF][CSA]

Laird, K. R. and Cumming, B. 2001. A regional paleolimnological assessment of the impact of clear-cutting on lakes from the central interior of British Columbia. Can. J. Fish. Aquat. Sci., 58: 492–505. [CROSSREF][CROSSREF][CSA]

Laird, K. R., Fritz, S. C. and Cumming, B. 1998. A diatom-based reconstruction of drought intensity, duration, and frequency from Moon Lake, North Dakota: a sub-decadal record of the last 2300 years. J. Paleolim., 19: 161–179. [CROSSREF][CROSSREF][CSA]

Lott, A. -M., Siver, P. A., Marsicano, L. J., Kodama, K. P. and Moeller, R. E. 1994. The paleolimnology of a small water body in the Pocono Mountains of Pennsylvania, USA : reconstructing 19th-20th century specific conductivity trends in relation to changing land use. J. Paleolim., 12: 75–86. [CROSSREF][CROSSREF][CSA]

Lotter, A. F. 2001. The paleolimnology of Soppensee (Central Switzerland), as evidenced by diatom, pollen, and fossil pigment analyses. J. Paleolim., 25: 65–79. [CROSSREF][CROSSREF][CSA]

McAndrews, J. H., Berti, A. A. and Norris, G. 1973. Key to the Quaternary Pollen and Spores of the Great Lakes Region, Toronto: The Royal Ontario Museum Publications in Life Sciences.

Meyers, P. A. and Lallier-Verges, E. 1999. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J. Paleolim., 21: 345–372. [CROSSREF][CROSSREF][CSA]

Moore, P. D., Webb, J. D. and Collinson, M. E. 1991. Pollen analysis, , 2nd edition, Oxford: Blackwell Scientific Publishers.

Moser, K. A., MacDonald, G. M. and Smol, J. P. 1996. Applications of freshwater diatoms to geographical research. Prog. Phys. Geog., 20: 21–52. [CSA]

Overpeck, J. T., Webb, T. and Prentice, I. C. 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of Modern Analogs. Quat. Res., 23: 87–108. [CROSSREF][CROSSREF]

Pennington, W. 1981. Records of a lake's life in time: the sediments. Hydrobiologia, 79: 197–219. [CROSSREF][CROSSREF][CSA]

Pienitz, R. and Vincent, W. F. 2003. “Generic Approaches towards water quality monitoring based on paleolimnology”. In Freshwater Management: Global versus Local Perspectives, Edited by: Kumagai, M. and Vincent, W. F. 61–83. Heidelberg, New York: Springer Verlag.

Pienitz, R., Smol, J. P. and Birks, H. J. B. 1995. Assessment of freshwater diatoms as quantitative indicators of past climatic change in the Yukon and Northwest Territories, Canada. J. Paleolim., 13: 21–49. [CROSSREF][CROSSREF][CSA]

Psenner, R. 1988. Alkalinity generation in a soft-water lake: watershed and in-lake processes. Limnol. Oceanogr., 33: 1463–1475. [CSA]

Reavie, E. D., Smol, J. P. and Carmichael, N. B. 1995. Post-settlement eutrophication histories of six British Columbia (Canada) lakes. Can. J. Fish. Aquat. Sci., 52: 2388–2401. [CSA]

Reavie, E. D., Smol, J. P., Sharpe, I. D., Westenhofer, L. A. and Roberts, A. -M. 2000. Paleolimnological analyses of cultural eutrophication patterns in British Columbia lakes. Can. J. Bot., 78: 873–888. [CROSSREF][CROSSREF][CSA]

Rhodes, T. E. 1991. A paleolimnological record of anthropogenic disturbances at Holmes Lake, Adirondack Mountains, New York. J. Paleolim., 5: 255–262. [CROSSREF][CROSSREF][CSA]

Schelske, C. L. and Hodell, D. A. 1991. Recent changes in productivity and climate of Lake Ontario detected by isotopic analysis of sediments. Limnol. Oceanogr., 36: 961–975. [CSA]

Schelske, C. L. and Hodell, D. A. 1995. Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie. Limnol. Oceanogr., 40: 918–929. [CSA]

Schindler, D. W. 1986. The significance of in-lake production of alkalinity. Water, Air, Soil Pollut., 30: 931–944. [CROSSREF][CROSSREF]

Siver, P. A. 1999. Development of paleolimnologic inference models for pH, total nitrogen and specific conductivity based on planktonic diatoms. J. Paleolim., 21: 45–59. [CROSSREF][CROSSREF][CSA]

Siver, P. A., Canavan, I V, R. W., Field, C. K., Marsicano, L. J. and Lott, A. -M. 1996. Historical changes in Connecticut lakes over a 55-year period. J. Environ. Quality, 25: 334–345. [CSA]

Siver, P. A., Lott, A. -M., Cash, E., Moss, J. and Marsicano, L. J. 1999. Century changes in Connecticut, U. S. A., lakes as inferred from siliceous algal remains and their relationships to land-use change. Limnol. Oceanogr., 44: 1928–1935. [CSA]

Smol, J. P. 1985. The ratio of diatom frustules to Chrysophycean statospores: a useful paleolimnological index. Hydrobiologia, 123(3): 199–204. [CROSSREF][CROSSREF]

Sommer, U., Gliwicz, Z. M., Lampert, W. and Duncan, A. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol., 106: 433–471.

Stoermer, E. F., Wolin, J. A., Schelske, C. L. and Conley, D. J. 1985. An assessment of ecological changes during the recent history of Lake Ontario based on siliceous algal microfossils preserved in the sediments. J. Phycol., 21: 257–276. [CSA]

Talbot, M. R. 2001. “Nitrogen isotopes in palaeolimnology”. In Tracking Environmental Change Using Lake Sediments: Physical and Chemical Techniques, Developments in Paleoenvironmental Research, Edited by: Last, W. M. and Smol, J. P. Volume 2, 401–439. Dordrecht: Kluwer Academic Publishers.

Teranes, J. L. and Bernasconi, S. M. 2000. The record of nitrate utilization and productivity limitation provided by δ15N values in lake organic matter—A study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnol. Oceanogr., 45: 801–813. [CSA]

Thoreau, H. D. 1854. Walden; or Life in the Woods, Boston: Ticknor and Fields.

VanDonk, E. and Kilham, S. S. 1990. Temperature effects on silicon-limited and phosphorus-limited growth and competitive interactions among three diatoms. J. Phycol., 26: 40–50. [CROSSREF][CROSSREF][CSA]

Wheeler, R. 1967. Concord: Climate for Freedom, Concord: The Concord Antiquarian Society.

Whitney, G. G. and Davis, W. C. 1986. From primitive woods to cultivated woodlots: Thoreau and the forest history of Concord, Massachusetts. J. Forest His., 30: 70–81. [CSA]

Winkler, M. G. 1993. “Changes at Walden Pond during the last 600 years”. In Thoreau's World and Ours: a Natural Legacy, Edited by: Schofield, E. A. and Baron, R. C. 199–211. Golden, Colorado: North American Press.

Wolfe, B. B., Edwards, T. W. D. and Duthie, H. C. 2000. A 6000-year record of interaction between Hamilton Harbour and Lake Ontario: quantitative assessment of recent hydrologic disturbance using 13C in lake sediment cellulose. Aquat. Ecosyst. Health Manage., 3: 47–54. [CROSSREF][CROSSREF][CSA]

Zeeb, B. A. and Smol, J. P. 2001. “Chrysophyte scales and cysts”. In Tracking Environmental Change Using Lake Sediments Volume 3. Terrestrial, Algal, and Siliceous Indicators, Edited by: Smol, J. P., Birks, H. J. B. and Last, W. M. 203–223. Dordrecht: Kluwer Academic Publishers.

Zeeb, B. A., Christie, C. E., Smol, J. P., Findlay, D. L., Kling, H. J. and Birks, H. J. B. 2004. Responses of diatom and chrysophyte assemblages in Lake-227 sediments to experimental eutrophication. Can. J. Fish. Aquat. Sci., 50: 2300–2311.

Published

2005-04-01

Issue

Section

Research article