Scaling in ecotoxicology: Theory, evidence and research needs

Authors

  • Alan R. Johnson Department of Forestry and Natural Resources, Clemson University, Clemson, South Carolina 29634, USA
  • John H. Rodgers Department of Forestry and Natural Resources, Clemson University, Clemson, South Carolina 29634, USA

Keywords:

grain, extent, extrapolation

Abstract

Issues of scale, particularly extrapolations across spatial or temporal scales, are of great importance in ecotoxicology. A variety of approaches are valuable for addressing issues of scale, and in developing scaling relationships that allow for extrapolation across scales. Both theoretical and empirical approaches can be applied in deriving scaling relationships. A variety of models may be employed, including statistical models, mathematical models, computer simulations and physical models (such as microcosms and mesocosms). Specific approaches that appear promising include dimensional analysis, allometric scaling, fractal geometry and microcosm/mesocosm experiments in which scale is appropriately manipulated as a treatment variable. Further research should be directed toward assessing the strengths and weaknesses of these approaches, identifying non-linearities and thresholds in scaling relationships, integrating spatial and temporal aspects of scaling, and designing experimental studies that explicitly address scale issues.

References

Ahl, V. and Allen, T. F. H. 1996. Hierarchy Theory: A Vision, Vocabulary, and Epistemology, New York, NY: Columbia University Press.

Barenblatt, G. I. 1996. Scaling, Self-Similarity, and Intermediate Asymptotics, Cambridge, , UK: Cambridge University Press.

Berg, H. C. 1983. Random Walks in Biology, Princeton, NJ: Princeton University Press.

Bovet, P. and Benhamou, S. 1988. Spatial analysis of animal movements using a correlated random walk model. J. Theor. Biol., 131: 419–433. [CSA]

Brody, S. 1945. Bioenergetics and Growth, New York, NY: Reinhold.

Brown, J. H. and West, G. B. 2000. Scaling in Biology, Oxford, , UK: Oxford University Press.

Calder, W. A. 1984. Size, Function, and Life History, Cambridge, MA: Harvard University Press.

Calder, W. A. 2000. “Diversity and convergence: scaling for conservation”. In Scaling in Biology, Edited by: Brown, J. H. and West, G. B. 297–323. Oxford, , UK: Oxford University Press.

Carlson, A. R. and Kosian, P. A. 1987. Toxicity of chlorinated benzenes to fathead minnows (Pimephelas promelas). Arch. Environ. Contam. Toxicol., 16: 129–135. [CROSSREF][CSA]

Carpenter, S. R. 1996. Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology, 77: 677–680. [CSA]

Cashman, J. R., Perotti, B. Y. T., Berkman, C. E. and Lin, J. 1996. Pharmacokinetics and molecular detoxication. Environ. Health Perspect., 104: 23–40. [PUBMED][INFOTRIEVE][CSA]

Crossland, N. O. and LaPoint, T. W. 1992. The design of mesocosm experiments. Environ. Toxicol. Chem., 11: 1–4. [CSA]

Damuth, J. 1987. Interspecific allometry of population density in mammals and other animals: the independence of body mass and population energy-use. Biol. J. Linn. Soc., 31: 193–246. [CSA]

Gardner, R. H., Kemp, W. M., Kennedy, V. S. and Petersen, J. E., eds. 2001. Scaling Relations in Experimental Ecology, New York, NY: Columbia University Press.

Gefen, Y., Aharony, A. and Alexander, S. 1983. Anomalous diffusion on percolation clusters. Phys. Rev. Lett., 50: 77–80. [CROSSREF][CSA]

Harte, J. 2000. “Scaling and self-similarity in species distributions: implications for extinction, species richness, abundance, and range”. In Scaling in Biology, Edited by: Brown, J. H. and West, G. B. 325–342. Oxford, , UK: Oxford University Press.

Harte, J., Kinzig, A. and Green, J. 1999. Self-similarity in the distribution and abundance of species. Science, 284: 334–336. [PUBMED][INFOTRIEVE][CROSSREF][CSA]

Hastings, H. M. and Sugihara, G. 1993. Fractals: A User's Guide for the Natural Sciences, Oxford, , UK: Oxford University Press.

Johnson, A. R., Milne, B. T. and Wiens, J. A. 1992. Diffusion in fractal landscapes: simulations and experimental studies of tenebrionid beetle movements. Ecology, 73: 1968–1983. [CSA]

Johnson, A. R., Hatfield, C. A. and Milne, B. T. 1995. Simulated diffusion in river networks. Ecol. Model., 83: 311–325. [CROSSREF][CSA]

Keitt, T. H. and Stanley, H. E. 1998. Dynamics of North American breeding bird populations. Nature, 393: 257–260. [CROSSREF][CSA]

Kelt, D. A. and Van Vuren, D. H. 2001. The ecology and macroecology of mammalian home range area. Am. Nat., 157: 637–645. [CROSSREF][CSA]

Kleiber, M. 1932. Body size and metabolism. Hilgardia, 6: 315–353. [CSA]

Legendre, P. and Legendre, L. 1998. Numerical Ecology, , 2nd English Edition, Amsterdam: Elsevier.

Mandelbrot, B. B. 1977. The Fractal Geometry of Nature, New York, NY: W. H. Freeman.

Mandelbrot, B. B. and Wallis, J. R. 1968. Noah, Joseph and operational hydrology. Water Resour. Res., 4: 909–918. [CSA]

Niklas, K. J. 1994. Plant Allometry: The Scaling of Form and Process, Chicago, IL: University of Chicago Press.

Pastorok, R. A., Butcher, M. K. and Nielsen, R. D. 1996. Modeling wildlife exposure to toxic chemicals: trends and recent advances. Hum. Ecol. Risk Assess., 2: 444–480. [CSA]

Peitgen, H. O., Jürgens, H. and Saupe, D. 1992. Chaos and Fractals: New Frontiers of Science, New York, NY: Springer-Verlag.

Perez, K. T., Morrison, G. E., Davey, E. W., Lackie, N. F., Soper, A. E., Blasco, R. J., Winslow, D. L., Johnson, R. L., Murphy, P. G. and Heltshe, J. F. 1991. Influence of size on fate and ecological effects of Kepone in physical models. Ecol. Appl., 1: 237–248. [CSA]

Peters, R. H. 1983. The Ecological Implications of Body Size., Cambridge, , UK: Cambridge University Press.

Petersen, J. E. and Hastings, A. 2001. Dimensional approaches to scaling experimental ecosystems: designing mousetraps to catch elephants. Am. Nat., 157: 324–333. [CROSSREF][CSA]

Petersen, J. E., Chen, C.-C. and Kemp, W. M. 1997. Scaling aquatic primary productivity: experiments under nutrient- and light-limited conditions. Ecology, 78: 2326–2338. [CSA]

Petersen, J. E., Cornwell, J. C. and Kemp, W. M. 1999. Implicit scaling in the design of experimental aquatic ecosystems. Oikos, 85: 3–18. [CSA]

Peterson, D. L. and Parker, V. T., eds. 1998. Ecological Scale: Theory and Applications, New York, NY: Columbia University Press.

Plotkin, J. B., Potts, M. D., Yu, D. W., Bunyavejchewin, S., Condit, R., Foster, R., Hubbell, S., LaFrankie, J., Manokaran, N., Seng, L. H., Sukumar, R., Nowak, M. A. and Ashton, P. S. 2000. Predicting species diversity in tropical forests. Proc. Nat. Acad. Sci. USA, 97: 10850–10854. [PUBMED][INFOTRIEVE][CROSSREF][CSA]

Potter, M. C. and Wiggert, D. C. 1991. Mechanics of Fluids., Englewood Cliffs, NJ: Prentice-Hall.

Rosenzweig, M. L. 1995. Species Diversity in Space and Time, Cambridge, , UK.: Cambridge University Press.

Sample, B. E. and Arenal, C. A. 1999. Allometric models for interspecies extrapolation of wildlife toxicity data. Bull. Environ. Contam. Toxicol., 62: 653–663. [PUBMED][INFOTRIEVE][CROSSREF][CSA]

Schindler, D. W. 1998. Replication versus realism: the need for ecosystem-scale experiments. Ecosystems, 1: 323–334. [CROSSREF][CSA]

Schneider, D. C. 1994. Quantitative Ecology: Spatial and Temporal Scaling., San Diego, CA: Academic Press.

Sutherland, G. D., Harestad, A. S., Price, K. and Lertzman, K. P. 2000. Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv. Ecol., 4(1): 16 [online] URL: http://www.consecol.org/vol4/iss1/art16[CSA]

Tarboton, D. G., Bras, R. L. and Rodriguez-Iturbe, I. 1988. The fractal nature of river networks. Water Resour. Res., 24: 1317–1322. [CSA]

Tarboton, D. G., Bras, R. L. and Rodriguez-Iturbe, I. 1989. Scaling and elevation in river networks. Water Resour. Res., 25: 2037–2051. [CSA]

Turner, S. J. and Johnson, A. R. 2001. “A theoretical framework for ecological assessment”. In A Guidebook for Integrated Ecological Assessments, Edited by: Bourgeron, M. E. and Bourgeron, P. S. 29–39. New York, NY: Springer-Verlag.

Vogel, S. 1994. Life in Moving Fluids: The Physical Biology of Flow. , 2nd Edition, Princeton, NJ: Princeton University Press.

West, G. B., Brown, J H. and Enquist, B. J. 1997. A general model for the origin of allometric scaling laws in biology. Science, 276: 122–126. [PUBMED][INFOTRIEVE][CROSSREF][CSA]

Wiens, J. A. 1989. Spatial scaling in ecology. Funct. Ecol., 3: 385–397. [CSA]

Published

2005-10-01