Release, bioavailability and toxicity of metals in lacustrine sediments: A case study of reservoirs and lakes in Southeast Brazil
Keywords:
remobilization, pH, microcosmsAbstract
Bioavailability and toxicity of metals in sediment were assessed in three water bodies in the State of São Paulo, SE Brazil, in one of the first investigations of the topic in the country. Weakly bound metals in bulk sediment samples taken from a highly-polluted reservoir, Billings, São Paulo, exhibited enrichment factors from 2.4 to 30 fold, compared to two other water bodies in the study, Barra Bonita Reservoir and Diogo Lake. High mortality rates occurred when Hyalella azteca and Ceriodaphnia dubia were exposed to Billings reservoir sediment. After forty-eight days of sediment oxidation, laboratory microcosms showed increases in the weakly-bound fraction of metals in sediments from Billings Reservoir (all metals), Diogo Lake (all metals except Zinc) and Barra Bonita Reservoir (Cadmium and Lead only). Chironomus xanthus was not sensitive to toxicity in sediment from any of the three environments. Ceriodaphnia dubia was sensitive to chronic toxicity in bulk field sediments from all three environments, and showed an increase in mortality rate in tests with oxidized sediment. Billings sediment, with or without aeration, caused 100 percent mortality, while in contact with Barra Bonita field sediment, a mortality of 10 percent of the adult organisms occurred, increasing up to 80 percent in post-aeration sediments. In Diogo Lake sediment, 30 percent mortality was observed in field or pre-aeration sediment rising to up to 60 percent in post aeration sediments. The two factors caused by oxidation of reduced substances in sediments, a fall in pH in the water and mobilization of bound metal, are invoked to explain this response.
References
Allen, H. E., Fu, G. and Deng, B. 1993. Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environ. Toxicol. Chem., 12: 1441–1453. [CSA]
Ambühl, H. and Bührer, H. 1975. Zur tecnick der entnahme ungestorer grosse proben von sedimenten; ein verbesserters bohrlot. Schweiz. z. Hydrol., 37: 175–186. [CSA]
Ankley, G. T., Di Toro, D. M., Hansen, D. J. and Berry, W. J. 1996. Technical basis and proposal for deriving sediment quality criteria for metals. Environ. Toxicol. Chem., 15: 2056–2066. [CSA][CROSSREF]
ASTM-APHA. 1989. Standard Methods for the Examination of Water and Wastewater , 17th Ed., Edited by: Fransoon, M. A.H. DC: Washington.
Burton, G. A. Jr and MacPherson, C. 1995. “Sediment toxicity issues and methods”. In Handbook of Ecotoxicology, Edited by: Hoffman, D. J., Rattner, B. A., Burton, G. A. and Cairns, J. pp. 70–103. Boca Raton, FL, , USA: Lewis Publishers.
Caetano, M., Madureira, M. and Vale, C. 2003. Metal remobilization during resuspension of anoxic contaminated sediment: short-term laboratory study. Water, Air, and Soil Pollu., 143: 23–40. [CSA][CROSSREF]
Calmano, W., Hong, J. and Förstner, U. 1993. Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Wat. Sci. Technol., 28(8–9): 223–235. [CSA]
Campbell, P. G. C. and Stokes, P. M. 1985. Acidification and toxicity of metals to aquatic biota. Can. J. Fish. Aquat. Sci., 42: 2034–2049. [CSA]
Cappellen, P. V. and Wang, Y. 1995. “Metal cycling in surface sediments: modeling the interplay of transport and reaction”. In Metal Contaminated Aquatic Sediments, Edited by: Allen, H. E. pp. 21–64. Michigan, , USA: Ann Arbor Press, Inc..
Carvalho, P. S. M., Zanardi, E., Buratini, S. V., Lamparelli, M. C. and Martins, M. C. 1998. Oxidizing effect on metal remobilization and Daphnia similis toxicity from the Brazilian reservoir sediment suspension. Wat. Res., 32(1): 193–199. [CSA][CROSSREF]
CETESB. 1996. Avaliação do complexo Billings: comunidades aquáticas, água e sedimento – (out/92 a out/93). In Portuguese
Christensen, E. R. 1998. Metals, acid-volatile sulfides, organics, and particle distributions of contaminated sediments. Wat. Sci. Tech., 37(6–7): 149–156. [CSA][CROSSREF]
Cooper, D. C. and Morse, J. W. 1998. Extractability of metal sulfide minerals in acid solutions: Application to environmental studies of traces metal contamination within anoxic sediments. Environ. Sci. Technol., 32: 1076–1078. [CSA][CROSSREF]
Delaune, R. and Smith, C. 1985. Release of nutrients and metals following oxidation of freshwater and saline sediment. J. Environ. Qual., 14: 164–168. [CSA]
DePaula, F. C. F. and Mozeto, A. A. 2001. Biogeochemical evolution of trace elements in a pristine watershed in the Brazilian southeastern coastal region. Appl. Geochem., 16: 1139–1151. [CSA][CROSSREF]
Di Toro, D. M., Mahony, J. D., Hansen, D. J., Scott, K. J., Carlson, A. R. and Ankley, G. T. 1992. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ. Sci. Technol., 26: 96–101. [CSA][CROSSREF]
Di Toro, D. M., Mahony, J. D., Hansen, D. J., Scott, K. J., Hicks, M. M., Mayr, S. M. and Redmond, M. S. 1990. Toxicity of cadmium in sediment: Role of acid volatile sulfide. Environ. Toxicol Chem., 9: 1489–1504. [CSA]
Fonseca, A. L. 1997. Avaliação da qualidade da água na bacia do Rio Piracicaba, São Paulo através de testes de toxicidade com invertebrados. PhD Thesis, EESC/USP, São Carlos. in Portuguese
Förstner, U., Ahlf, W., Calmano, W., Kersten, M. and Schoer, J. 1989. “Assessment of metal mobility in sludges and solid wastes”. In Metal Speciation in the Environment, NATO ASI Series G (Ecological Sciences) Edited by: Brockaert, J. A.C., Guçer, S. and Adams, F. pp. 2–41.
Hagerby, A. and Petersen, R. C. Jr. 1988. Effects of low pH and humus on the survivorship, growth and feeding of Gammarus pulex (L.) (Amphipoda). Freshwat. Biol., 19: 235–247. [CSA]
Krusche, A. V. and Mozeto, A. A. 1999. Seasonal variations in water quality of an oxbow lake in response to multiple short-term pulses of flooding (Jataí Ecological Station, Moji-Guaçu River, Luiz Antonio, SP-Brazil).. An. Acad. Bras. Ci., 71(4–I): 777–790. [CSA]
Mitchell, S. A. 1992. The effect of pH on Brachionus calyciflorus Pallas (rotífera). Hydrobiologia, 245: 87–93. [CSA][CROSSREF]
Morris, R., Taylor, E. W., Brown, D. J. A. and Brown, J. A., eds. 1989. Acid Toxicity and Aquatic Animals., UK: Cambridge University Press.
Mozeto, A. A. and Albuquerque, A. L. 1997. Biogeochemical properties at the Jataí Ecological Station wetlands (Moji-Guaçu River, São Paulo, SP). Ci. e Cult., 44: 25–33. [CSA]
Mozeto, A. A., Pistolato, M. L., Nóbrega, J. A. and Krusche, A. V. 1989. “Determinação espectrofotométrica de sulfetos totais em águas naturais empregando injeção em fluxo”. In V Encontro Nacional de Química Analítica (ENQA), Salvador, BA p. 131 In Portuguese
Mozeto, A. A., Silvério, P. F., DePaula, F. C. D., Bevilacqua, J. J., Patella, E. and Jardim, W. F. 2003. “Weakly-bound metals and total nutrient concentrations of bulk sediments from some water reservoirs in São Paulo State, SE Brazil”. In Sediment Quality Assessment and Management: Insight and Progress, Edited by: Munawar, M. pp. 221–239. Burlington, ON, , Canada: Aquatic Ecosystem Health and Management Society.
USEPA (United States Environmental Protection Agency). 2000a. Methods for measuring the toxicity and bioaccumulation of sediments-associated contaminants with freshwater invertebrates. 2nd Edition., Duluth, Minnesota: USEPA. Office of Research and Development, Mid-Continent Ecology Division, 55804. EPA/600/R-99/064. March 2000
USEPA. 2000b. Equilibrium partitioning sediments guidelines (ESGs) for the protection of benthic organisms: Metal mixtures (cadmium, copper, lead, nickel, silver and zinc) Office of Science and Technology. Office of Research and Development Washington, D.C. 20460. EPA-822-R-00-005
Published
Issue
Section
License
Manuscripts must be original. They must not be published or be under consideration for publication elsewhere, in whole or in part. It is required that the lead author of accepted papers complete and sign the MSU Press AEHM Author Publishing Agreement and provide it to the publisher upon acceptance.