Ecotoxicological assessment of pollutant flux released from bottom ash reused in road construction

Authors

  • Gaëlle Triffault-Bouchet Laboratoire des Sciences de l'Environnement, ENTPE, Rue Maurice Audin, 69518 Vaulx-en-Velin, France
  • Bernard Clément Laboratoire des Sciences de l'Environnement, ENTPE, Rue Maurice Audin, 69518 Vaulx-en-Velin, France
  • Gérard Blake Laboratoire Transferts et Effets des Polluants sur L'environnement, Université de Savoie, 73376 Le Bourget du Lac, France

Keywords:

copper, Pseudokirchneriella subcapitata , Lemna minor , Daphnia magna , Chironomus riparius , Hyalella azteca

Abstract

Two approaches have been used to assess the impact of municipal solid waste incineration bottom ash on lentic ecosystems, especially lake coastlines. One of the aims of this study was to complete the methodology for the assessment of waste ecocompatibility by assessing a scenario in which bottom ashes are reused as road embankment. A laboratory lysimeter was chosen to simulate the road embankment and produce the bottom ash leachate. The first approach was based on three bioassays. Results led to the following ranking of these bioassays based on organisms sensitivity, in descending order: algae Pseudokirchneriella subcapitata > duckweed Lemna minor > cladoceran Daphnia magna. At the same time, leachates were assessed with a 2 litre freshwater/sediment microcosm. All species were impaired. Toxicity effects increased with leachate concentration, from 1.56% to 8.0%. Comparison between bioassays and microcosm assays revealed that the representativeness is higher in the multispecies systems. Finally, bottom ashes have been assessed in a simplified risk assessment procedure. Predicted environmental concentration is close to the concentration that caused first effects in microcosms. Recommendations are made for the reuse of bottom ashes as road embankment.

References

ADEME (French Agency for Environmental Management and Energy Conservation). 2002. Evaluation de l'écocompatibilité de scénarios de stockage et de valorisation des déchets, Connaitre pour agir Angers: ADEME.

AFNOR (Association Française de Normalisation, Paris, France). 1996. “Essai des eaux—Détermination de l'inhibition de la croissance de Lemna minor”. norme XP T 90–337.

AFNOR. 1997. “Analyses de l'eau—Lignes directrices pour le dosage du carbone organique total (TOC) et carbone organique dissous (COD)”. norme NF EN 1484

AFNOR. 1998a. 90–112. Qualité de l'eau—Dosage de huit éléments métalliques (Mn, Fe, Co, Ni, CU, Zn, Ag, Pb) par spectrométrie d'absorption atomique dans la flamme, NF T

AFNOR. 1998b. 90–375. Qualité de l'eau—Détermination de la toxicité chronique des eaux par inhibition de la croissance de l'algue d'eau douce Pseudokirchneriella subcapitata (Selenastrum capricornutum), norme NF T

AFNOR. 1999a. Qualité de l'eau—Dosage par chromatographie ionique des ions Li+, NH4+, K+, Mn2+, Ca2+, Mg2+, Sr2+ et Ba2+ dissous—Méthode applicable pour l'eau et les eaux résiduaires, norme NF T 90-048

AFNOR. 1999b. 90–320. Qualité de l'eau—Détermination de l'effet inhibiteur d'échantillons d'eau sur la luminescence de Vibrio fischeri (Essai de bactéries luminescentes)—Partie 3: méthode utilisant des bactéries lyophilisées, norme NF T

ASTM (American Society for Testing and Materials). 1993. “Standard practices for measurement of chlorophyll content of algae in surface waters, D 3731-87”. In ASTM Standards on Aquatic Toxicology and Hazard Evaluation 2–5.

Buckley, J. A., Rustagi, K. P. and Laughlen, J. D. 1996. Response of Lemna minor to sodium chloride and a statistical analysis of continuous measurements for EC50 and 95% confidence limits calculation. Bull. Environm Contamin. Tox., 57(6): 1003–1008. [CSA]

Chandler, A. J., Eighmy, T. T., Hartlén, J., Hjelmar, O., Kosson, D. S., Sawell, S. E., van der Sloot, H. A. and Vehlow, J. 1997. “Bottom ash”. In Municipal solid waste incinerator residues, 339–417. Amsterdam: Elsevier.

Chapman, P. M., Fairbrother, A. and Brown, D. 1998. A critical evaluation of safety (uncertainty) factors for ecological risk assessment. Environ. Tox. Chem., 17(1): 99–108. [CROSSREF][CSA]

Clément, B. and Cadier, C. 1998. Development of a new laboratory freshwater/sediment microcosm test. Ecotoxicology, 7: 279–290. [CROSSREF][CSA]

Clément, B., Devaux, A., Perrodin, Y., Danjean, M. and Ghidini-Fatus, M. 2004. Assessment of sediment ecotoxicity and genotoxicity in freshwater laboratory microcosm. Ecotoxicology, 13: 323–333. [CROSSREF][CSA]

Dugenest, S., Casabianca, H. and Grenier-Loustalot, M. F. 1999. Municipal solid waste incineration bottom ash: characterization and kinetic studies of organic matter. Environm. Sci. Technol., 33(7): 1110–1115. [CROSSREF][CSA]

Ferrari, B., Radetski, C. M., Veber, A.-M. and Férard, J.-F. 1999. Ecotoxicological assessment of solid wastes: a combined liquid- and solid-phase testing approach using a battery of bioassays and biomarkers. Environ. Tox. Chem., 18(6): 1195–1202. [CROSSREF][CSA]

Girling, A. E., Pascoe, D., Janssen, C. R., Peither, A., Wenzel, A., Schäfer, H., Neumeier, B., Mitchell, G. C., Taylor, E. J., Maund, S. J., Lay, J. P., Jüttner, I., Crossland, N. O., Stephenson, R. R. and Persoone, G. 2000. Development of methods for evaluating toxicity to freshwater ecosystems. Ecotox. Environ. Safety, 45: 148–176. [CROSSREF][CSA]

Ingersoll, C. G., Haverladn, P. S., Brunson, E. L., Canfield, T. J., Dwyer, F. J., Henke, C. E., Kemble, N. E. and Mount, D. R. 1996. “Calculation and evaluation of sediment effect concentration for the amphipod Hyalella azteca and the midge Chironomus riparius”. EPA 905-R96-008 Chicago, II: United States Environmental Protection Agency.

ISO (International Standards Organization). 1989. Qualité de l'eau—Détermination de l'inhibition de la mobilité de Daphnia magna Strauss (Cladocera, Crustacea), norme ISO 6341

Jenner, H. A. and Janssen-Mommen, J. P. M. 1993. Duckweed Lemna minor as a tool for testing toxicity of coal residues and polluted sediments. Arch. Environ. Contamin. Tox., 25: 3–11. [CSA]

Kubitz, J. A., Besser, J. M. and Giesy, J. P. 1996. A two-step experimental design for a sediment bioassay using growth of the amphipod Hyalella azteca for the test end point. Environ. Tox. Chem, 15: 1783–1792. [CROSSREF][CSA]

Lapa, N., Barbosa, R., Morais, J., Mendes, B., Méhu, J. and Santos Oliviera, J. F. 2002. Ecotoxicological assessment of leachates from MSWI bottom ashes. Waste Manage, 22: 583–593. [CROSSREF][CSA]

MATE (Ministère de l'Aménagement du Territoire et de l'Environnement). 1994. Circulaire ministérielle du 9 mai 1994 relative à l'élimination des mâchefers d'incinération des résidus urbains n° 94-IV-1

Meima, J. A. and Comàns, R. N. J. 1999. The leaching of trace elements from municipal solid waste incinerator bottom ash at different stages of weathering. Appl. Geochem., 14: 159–171. [CROSSREF][CSA]

Meima, J. A., van der Weijden, R. D., Eighmy, T. T. and Comans, R. N. J. 2002. Carbonation processes in municipal solid waste incinerator bottom ash and their effect on the leaching of copper and molybdenum. Appl. Geochem., 17: 1503–1513. [CROSSREF][CSA]

OECD (Organisation for Economic Co-operation and Development). 1993. “Algal growth inhibition test # 201, O.E.C.D. guideline for testing of chemicals, Draft proposal for a guidance document”. Freshwater lentic field tests

Perrodin, Y., Gobbey, A., Grelier-Volatier, L., Canivet, V., Fruget, J.-F., Gibert, J., Texier, C., Cluzeau, D., Gros, R., Poly, F. and Jocteur-Monrozier, L. 2002. Waste ecocompatibility in storage and reuse scenarios : global methodology and detailed presentation of the impact study on the recipient environments. Waste Manage, 22: 215–228. [CROSSREF][CSA]

Radix, P., Léonard, M., Papantoniou, C., Roman, G., Saouter, E., Gallotti-Schmitt, S., Thiébaud, H. and Vasseur, P. 2000. Comparison of four chronic toxicity tests using algae, bacteria and invertebrate assessed with sixteen chemicals. Ecotox Environ Safety, 47: 186–194. [CROSSREF][CSA]

Rai, L. C. and Mallick, N. 1993. Heavy metal toxicity to algae under synthetic microcosm. Ecotoxicology, 2: 213–242. [CROSSREF][CSA]

Taylor, G., Baird, D. J. and Soares, A. M. V.M. 1998. Surface binding of contaminants by algae: consequences for metal toxicity and feeding to Daphnia magna Strauss. Environm. Tox. Chem., 17(3): 412–419. [CROSSREF][CSA]

Taub, F. B. 1989. “Standardized aquatic microcosm—Development and testing”. In Aquatic Ecotoxicology: Fundamentals, Concepts and Methodologies, Edited by: Boudou, A. and Ribeyre, F. II. 47–91. Boca Raton, Florida: CRC Press.

Wang, W. 1986. Toxicity tests of aquatic pollutants by using common duckweed, Environ. Pullu. (Series B), 11: 1–14. [CSA]

Ward, T. J., Rausina, G. A., Stonebraker, P. M. and Robinson, W. E. 2002. Apparent toxicity resulting from the sequestering of nutrient trace metals during standard Selenastrum capricornutum toxicity tests. Aquat. Tox., 60: 1–16. [CROSSREF][CSA]

Wiles, C. C. 1996. Municipal solid waste combustion ash: state-of-the-knowledge. J. Hazard. Mat., 47: 325–344. [CROSSREF][CSA]

Published

2005-10-01