Are percolates released from solid waste incineration bottom ashes safe for lentic ecosystems? A laboratory ecotoxicological approach based on 100 litre indoor microcosms
Keywords:
laboratory microcosm, toxicity, cladocerans, microalgae, macrophytes, chironomids, amphipods, pond snailsAbstract
In France, municipal solid waste incineration bottom ashes are widely used in road building. Leachates released from these materials may constitute a hazard for aquatic ecosystems. In order to assess this risk, a study of bottom ash leachates toxicity was carried out on 100 litre indoor microcosms. The 100 litre microcosms are glass tanks filled with a lake sediment and synthetic water, and inoculated with various organisms: microalgae, duckweeds, rooted macrophytes, cladocerans, pond snails, amphipods and chironomids. The microcosms were contaminated twice so as to reach a final leachate concentration of three percent. The contamination led to increased salt and metal concentrations. Among cladocerans, Daphnia magna was sensitive to contamination although recovery was observed, whereas Simocephalus vetulus and Ceriodaphnia dubia were not. Results regarding the amphipod Hyalella azteca depended on major exposure, via the water column (encaged organisms) or via the sediment (free organisms). Chironomids emerged similarly in control and contaminated systems. Among pond snails, leachates impaired survival and grazing activity of Lymnea stagnalis, whereas Physa sp. was not sensitive. Growth of all primary producers tested in the microcosms was not impaired. Copper may explain most of the observed effects. Due to the fact that concentrations studied here seem to be an overestimation of real field concentrations, and that bottom ash leachates characteristics decrease with time, it was concluded that the risks for lentic aquatic ecosystems would be minimal.
References
AFNOR. 1998a. Qualité de l'eau - Dosage d'éléments minéraux (Al, Sb, Ag, Ba, Co, Cu, Sn, Mn, Mo, Ni, Pb, Se, Ti, V), norme NF T 90-119
AFNOR. 1998b. Qualité de l'eau - Dosage de huit éléments métalliques (Mn, Fe, Co, Ni, Cu, Zn, Ag, Pb) par spectrométrie d'absorption atomique dans la flamme, norme NF T 90-112
Ankley, G. T., Mattson, V. R., Leonard, E. N., West, C. W. and Bennett, J. L. 1993. Predicting the acute toxicity of copper in freshwater sediments: evaluation of the role of acid-volatile sulfide, Environ. Toxicol. Chem., 12: 315–320. [CSA]
Arquie, G. and Morel, G. 1988. Le compactage, Paris: Eyrolles.
Assmuth, T. and Penttilä, S. 1995. Characteristics, determinants and interpretations of acute lethality in daphnids exposed to complex waste leachates. Aquatic Toxicol., 31: 125–141. [CROSSREF][CSA]
ASTM. 1993. “Standard practices for measurement of chlorophyll content of algae in surface waters, D 3731-87”. In ASTM Standards on Aquatic Toxicology and Hazard Evaluation, 2–5. Washington, D.C.: ASTM.
Babut, M., Perrodin, Y., Bray, M., Clément, B., Delorme, C., Devaux, A., Durrieu, C., Garric, J., Vollat, B., Bécart, D. and Charrier, C. 2002. Évaluation des risques écologiques causés par des matériaux de dragage: proposition d'une approche adaptée aux dépôts en gravière en eau. Rev. Sci. Eau, 15: 615–639. [CSA]
Barry, M. J. and Logan, D. C. 1998. The use of temporary pond microcosms for aquatic toxicity testing: direct and indirect effects of endosulfan on community structure. Aquatic Toxicol., 41: 101–124. [CROSSREF][CSA]
Biesinger, K. E. and Christensen, G. M. 1972. Effects of various metals on the survival, growth, reproduction, and metabolism of Daphnia magna. J. Fish. Res. Board Canada, 29: 1691–1700. [CSA]
BKH. 1995. “Update toxiciteitsgegevens voor vier stoffen in het kader van MILBOWA”. Versie maart 1995. ln
Bonnet, C. 2000. Développement de bioessais sur sédiments et applications à l'étude, en laboratoire, de la toxicité de sédiments dulçaquicoles contaminés, Ph.D. thesis Metz: spécialité ⟨⟨Toxicologie de l'Environnement⟩⟩ Université de Metz.
Carlson, A. R., Nelson, H. and Hammermeister, D. 1986. Development and validation of site-specific water quality criteria for copper. Environ. Toxicol. Chem., 5: 997–1012. [CSA]
Chandler, A. J., Eighmy, T. T., Hartlén, J., Hjelmar, O., Kosson, D. S., Sawell, S. E., van der Sloot, H. A. and Vehlow, J. 1997. Leaching Modelling in Municipal Solid Waste Incinerator Residues, Amsterdam: Elsevier.
Clément, B. and Cadier, C. 1998. Development of a new laboratory freshwater/sediment microcosm test. Ecotoxicology, 7: 279–290. [CROSSREF][CSA]
Clément, B., Devaux, A., Perrodin, Y., Danjean, M. and Ghidini-Fatus, M. 2004. Assessment of sediment ecotoxicity and genotoxicity in freshwater laboratory microcosms. Ecotoxicology, 13: 323–333. [CROSSREF][CSA]
Clément, B. and Zaid, S. 2004. A new protocol to measure the effects of toxicants on daphnid-algae interactions. Chemosphere, 55: 1429–1438. [CROSSREF][CSA]
Elnabarawi, M. T., Welter, A N. and Robideau, R R. 1986. Relative sensitivity of three daphnid species to selected organic and inorganic chemicals. Environ. Toxicol. Chem., 5: 393–398. [CSA]
Enserink, E. L., Maas-Diepeveen, J. L. and van Leeuwen, C. J. 1991. Combined toxicity of metals; an ecotoxicological evaluation. Water Res., 25: 679–687. [CROSSREF][CSA]
Férard, J.-F. and Ferrari, B. 1997. Quel test de toxicité chronique sur invertébrés faut-il choisir pour l'évaluation de la dangerosité des déchets?. Déchets Sciences et Techniques, 8: 44–47. [CSA]
Ferrari, B. 2000. Contribution à l'étude de l'écocompatibilité de mâchefers d'incinération d'ordures ménagères et de scories de seconde fusion du plomb, spécialité ⟨⟨Toxicologie de l'Environnement⟩⟩, Ph.D. thesis Metz: Université de Metz.
Ferrari, B., Radetski, C. M., Veber, A.-M. and Ferard, J.-F. 1999. Ecotoxicological assessment of solid wastes: a combined liquid- and solid-phase testing approach using a battery of bioassays and biomarkers. Environ. Toxicol. Chem., 18: 1195–1202. [CROSSREF][CSA]
Forbes, V. E. and Forbes, T. L. 1997. Ecotoxicologie - Théorie et Applications, Paris: INRA Editions.
Freyssinet, Ph, Piantone, P., Azaroual, M., Itard, Y., Clozel-Leloup, B., Guyonnet, D. and Baudron, J. C. 2002. Chemical changes and leachate mass balance of municipal solid waste bottom ash submitted to weathering. Waste Manage., 22: 159–172. [CROSSREF][CSA]
INERIS (Institut National de l'Environnement Industriel et des Risques). 2003. Cuivre: fiche de données toxicologiques et environnementales de substances chimiques version N° 1-1/novembre 2003 INERIS-DRC-02-25590-ETSC-APi/OD N° 02df54
ISO (International Organization for Standardization). 1989. “Qualité de l'eau - Détermination de l'inhibition de la mobilité de Daphnia magnaStraus (Cladocera, Crustacea)”. norme ISO 6341
Ivorra, N., Kraak, M. H. S. and Admiraal, W. 1995. Use of lake water in testing copper toxicity do Desmid species, Wat. Res., 29: 2113–2117. [CSA]
Jak, R. 1997. Toxicant-induced changes in zooplankton communities and consequences for phytoplankton development, Ph.D. thesis Amsterdam, , The Netherlands: Vrije University.
Jak, R. G., Maas, J. L. and Scholten, M. C. Th. 1996. Evaluation of laboratory derived toxic effect concentrations of a mixture of metals by testing freshwater zooplankton communities in enclosures. Wat. Res., 30: 1215–1227. [CROSSREF][CSA]
Jenner, H. A. and Janssen-Mommen, J. P. M. 1993. Duckweed Lemna minor as a tool for testing toxicity of coal residues and polluted sediments. Arch. Environ. Contam. Toxicol., 25: 3–11. [CROSSREF][CSA]
Kimball, K. D. and Levin, S. A. 1985. Limitations of laboratory bioassays: the need for ecosystem level testing. BioScience, 35: 165–171. [CSA]
Kubitz, J. A., Lewek, E. C., Besser, J. M., Drake, J. B. and Giesy, J. P. 1995. Effects of copper-contaminated sediments on Hyalella azteca, Daphnia magna and Ceriodaphnia dubia: survival, growth, and enzyme inhibition. Arch. Environ. Contam. Toxicol., 29: 97–103. [CROSSREF][CSA]
Lampert, W., Fleckner, W., Rai, H. and Taylor, B. E. 1986. Phytoplankton control by grazing zooplankton: a study on the clear-water phase. Limnol. Oceanogr., 31: 478–490. [CSA]
Lapa, N., Barbosa, R., Morais, J., Mendes, B., Méhu, J. and Santos Oliviera, J. F. 2002. Ecotoxicological assessment of leachates from MSWI bottom ashes. Waste Manage, 22: 583–593. [CROSSREF][CSA]
MATE (Ministère de l'Aménagement du Territoire et de l'Environnement). 1994. Circulaire ministérielle du 9 mai 1994 relative à l'élimination des mâchefers d'incinération des résidus urbains, circulaire 94-IV-1
OECD (Organization for Economic Cooperation and Development). 1996. “OECD guidelines for testing of chemicals”. In Draft proposal for a guidance document Freshwater Lentic Field Tests
Péry, A. R. R., Mons, R., Flammarion, P., Lagadic, L. and Garric, J. 2002. A modeling approach to link food availability, growth, emergence and reproduction for the midge Chironomus riparius. Environ. Toxicol. Chem., 21: 2507–2513. [CROSSREF][CSA]
Reynoldson, T. B., Day, K. E., Clarke, C. and Milani, D. 1994. Effect of indigenous animals on chronic endpoints in freshwater sediment toxicity tests. Environ. Toxicol. Chem., 13: 973–977. [CSA]
RIVM (Rijksinstituut voor Volksgezondheid en Milieu). 1999. Environmental Risk Limits in the Netherlands, The Netherlands: RIVM. 601640 001
Schroder, G. D., Ross-Lewandowski, S. and Davis, E. M. 1991. Evaluation of the toxic effects of selected municipal wastewater effluents on aquatic invertebrates. Environ. Technol., 12: 757–768. [CSA]
Schubauer-Berigan, M. K. and Dierkes, J. R. 1993. pH-dependent toxicity of Cd, Cu, Ni, Pb, and Zn to Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca, and Lumbriculus variegatus. Environ. Toxicol. Chem., 12: 1261–1266. [CSA]
Toussaint, M. W., Shedd, T. R., van der Schalie, W. H. and Leather, G. R. 1995. A comparison of standard acute toxicity tests with rapid-screening toxicity tests. Environ. Toxicol. Chem., 14: 907–915. [CSA]
Triffault-Bouchet, G., Clément, B., Blake, G. and Perrodin, Y. 2004. Evaluation du potentiel toxique de percolats de mâchefers d'incinération d'ordures ménagères au laboratoire: comparaison de bioessais monospécifiques et d'un essai en microcosme. Déchets, Sciences et Techniques, 33: 25–33. [CSA]
Van Leeuwen, C. J., Büchner, J. L. and van Dijk, H. 1988. An intermittant-flow system for population toxicity studies demonstrated with Daphnia and copper. Bull. Environ. Contam. Toxicol., 40: 496–502. [PUBMED][INFOTRIEVE][CROSSREF][CSA]
Verrhiest, G., Clément, B. and Merlin, G. 2000. Influence of sediment organic matter and fluoranthene-spiked sediments on some bacterial parameters in laboratory freshwater/ formulated sediment microcosms. Aquat. Ecosys.m Health Manage., 3: 359–368. [CROSSREF][CSA]
Versteeg, D J., Stalmans, M., Dyer, S. D. and Janssen, C. 1997. Ceriodaphnia dubia and Daphnia: a comparison of their sensitivity to xenobiotics and utility as a test species. Chemosphere, 34: 869–892. [CROSSREF][CSA]
Walsh, G. E., Deans, C. H. and McLaughlin, L. L. 1987. Comparison of the EC50s of algal toxicity tests calculated by four methods. Environ. Toxicol. Chem., 6: 767–770. [CSA]
Wong, C. K. 1989. Effects of cadmium on the feeding behavior of the freshwater cladoceran Moina macrocopa. Chemosphere, 18: 1681–1687. [CROSSREF][CSA]
Published
Issue
Section
License
Manuscripts must be original. They must not be published or be under consideration for publication elsewhere, in whole or in part. It is required that the lead author of accepted papers complete and sign the MSU Press AEHM Author Publishing Agreement and provide it to the publisher upon acceptance.

