Chitobiase activity as an indicator of aquatic ecosystem health

Authors

  • Mark L. Hanson UMR 985 INRA-ENSAR Ecobiologie et Qualité des Hydrosystemes Continentaux, Rennes, France
  • Laurent Lagadic UMR 985 INRA-ENSAR Ecobiologie et Qualité des Hydrosystemes Continentaux, Rennes, France

Keywords:

benthic insects, arthropods, field-level assessment, environmental effects monitoring

Abstract

The sampling of benthic arthropods is one of several common approaches to monitor and assess ecosystem health in both lotic and lentic systems. This type of environmental effects monitoring has a number of drawbacks that support the development of new methodologies to improve our ability to detect and mitigate effects in the field. We propose an enzymatic technique to assess the status of arthropod communities and ecosystem health rapidly and efficiently. The method is based on measuring the activity of free chitobiase, an arthropod moulting enzyme, in natural waters. The rationale behind using chitobiase activity and how it could be applied to general field monitoring and assessment situations are discussed. An example of results obtained from field level monitoring using this assay is presented from the Oir River catchment and one of its tributaries, the La Roche, in Lower Normandy, France. Chitobiase activity was detected and quantified with low variability in the Oir and La Roche with the enzyme's activity statistically related (p < 0.0001, r 2 = 0.77) to standard water quality physico-chemical parameters using multiple linear regression. A decrease in chitobiase activity was noted downstream of a sewage treatment plant releasing effluent into the Oir. This is the first time chitobiase activity has been measured in a freshwater ecosystem as an indicator of ecosystem health. However, extensive validation is required before chitobiase activity can be used in an environmental monitoring context.

References

Allan, J. D. 1995. “Stream Ecology”. In Structure and Function of Running Waters, UK: Chapman and Hall.

AQEM Consortium. 2002. “Manual for the application of the AQEM system. A comprehensive method to assess European streams using benthic macroinvertebrates”. In Developed for the purpose of the Water Framework Directive Version 1.0, February 1.0 www.aqem.de

Bailey, R. C., Norris, N. H. and Reynoldson, T. B. 2001. Taxonomic resolution of benthic macroinvertebrate communities in bioassessments. J. N. Am. Benthol. Soc., 20: 280–286. [CSA]

Bencala, K. E. and Walters, R. A. 1983. Simulation of solute transport in a mountain pool-and-riffle stream: a transient storage model. Wat. Resource Res., 19: 718–724. [CSA]

Caquet, T., Lagadic, L., Monod, G., Lacaze, J.-C. and Coute, A. 2001. Variability of physicochemical and biological parameters between replicated outdoor freshwater lentic mesocosms. Ecotoxicology, 10: 51–66. [PUBMED][INFOTRIEVE][CROSSREF][CSA]

Culp, J. M., Wiseman, M. E., Bailey, R. C., Glozier, N. E., Lowell, R. B., Reynoldson, T. B., Trudel, L. and Watson, G. D. 2003. New requirements for benthic community assessments at Canadian metal mines are progressive and robust: reply to Orr et al. SETAC Globe, 4(2): 31–32. [CSA]

Drach, P. 1939. Mue et cycle d'intermue chez les Crustacés. Ann. Inst. Oceanogr. (Monaco), 19: 103–391. [CSA]

Duggan, I. C., Collier, K. J., Champion, P. D., Croker, G. F., Davies-Colley, R. J., Lambert, P. W., Nagels, J. W. and Wilcock, R. J. 2002. Ecoregional differences in macrophyte and macroinvertebrate communities between Westland and Waikato: are all New Zealand lowland streams the same?. N. Z. J. Mar. Freshw. Res., 36(4): 831–845. [CSA]

Environment Canada. 2002. Metal mining guidance document for aquatic environmental effects monitoring, Ottawa, Ontario: National EEM Office, Science Policy and Environmental Quality Branch, Environment Canada. http://www.ec.gc.ca/eem

Environment Canada. 2003. National assessment of the pulp and paper environmental effects monitoring data, Burlington, Ontario: National Water Research Institute, Environment Canada. http://www.ec.gc.ca/eem

Espie, P. J. and Roff, J. C. 1995a. A biochemical index of duration of the molt cycle for planktonic Crustacea based on the chitin-degrading enzyme, chitobiase. Limnol. Oceanogr., 40(6): 1028–1034. [CSA]

Espie, P. J. and Roff, J. C. 1995b. Characterization of chitobiase from Daphnia magna and its relation to chitin flux. Physiol. Zool., 68: 727–748. [CSA]

Feminella, J. W. 2000. Correspondence between stream macroinvertebrate assemblages and 4 ecoregions of the southeastern USA. J. North Am. Benthol. Soc., 19(3): 442–461. [CSA]

Fischer, H. B., List, E. G., Koh, R. C. Y., Imberger, J. and Brooks, N. H. 1979. Mixing in Inland and Coastal Waters, New York, NY, , USA: Academic Press.

Gillot, C. 1991. Entomology, New York, NY, , USA: Plenum Press.

Gouraud, V., Bagliniere, J. L., Baran, P., Sabaton, C., Lim, P. and Ombredane, D. 2001. Factors regulating brown trout populations in two French rivers: application of a dynamic population model. Regul. Rivers: Res. Mgmt., 17: 557–569. [CROSSREF][CSA]

Heino, J., Muotka, T., Mykra, H., Paavola, R., Hamalainen, H. and Koskenniemi, E. 2003. Defining macroinvertebrate assemblage types of headwater streams: implications for bioassessment and conservation. Ecol. Appl., 13(3): 842–852. [CSA]

Johnson, R. K. 1998. Spatiotemporal variability of temperate lake macroinvertebrate communities: detection of impact. Ecol. Applicat., 8: 61–70. [CSA]

Lafrancois, B. M., Carlisle, D. M., Nydick, K. R., Johnson, B. M. and Baron, J. S. 2003. Environmental characteristics and benthic invertebrate assemblages in Colorado mountain lakes. West. N. Am. Nat., 63(2): 137–154. [CSA]

Landis, W. G. 2003. Taxonomic identification: the question and required resolution. SETAC Globe, 4(2): 29–30. [CSA]

Lawrence, J. M. and Gresens, S. E. 2004. Foodweb response to nutrient enrichment in rural and urban streams. J. Freshwat. Ecol., 19(3): 375–385. [CSA]

Lenat, D. R. and Resh, V. H. 2001. Taxonomy and stream ecology – The benefits of genus-and species-level identification. J. N. Am. Benthol. Soc., 20: 287–298. [CSA]

Malmqvist, B. 2002. Aquatic invertebrates in riverine landscapes. Freshwater Biol., 47: 679–694. [CROSSREF][CSA]

McCarty, L. S., Power, M. and Munkittrick, K. R. 2002. Bioindicators versus biomarkers in ecological risk assessment. Hum. Ecol. Risk Assess., 8(1): 159–164. [CROSSREF][CSA]

Muzzarelli, R. A. A. 1977. “Chitinases and related enzymes”. In Chitin, Edited by: Muzzarelli, R. A. A. 155–177. Oxford: Pergamon.

Oosterhuis, S. S., Baars, A. B. and Klein Breteler, W. C. M. 2000. Release of the enzyme chitobiase by the copepod Temora longicornis: characteristics and potential tool for estimating crustacean biomass production in the sea. Mar. Ecol. Prog. Ser., 196: 195–206. [CSA]

Orr, P., Zaranko, D., Martin, I., Burr, A., Farara, D. and Wren, C. 2003. Are proposed requirements for benthic community assessments at Canadian metal mines progressive or regressive?. SETAC Globe, 4(1): 35–36. [CSA]

Revelli, R. and Ridolfi, L. 2003. Transport of reactive chemicals in sediment-laden streams. Adv. Wat. Resources., 26: 815–831. [CROSSREF][CSA]

Roff, J. C., Kroetsch, J. T. and Clarke, A. J. 1994. A radiochemical method for secondary production in planktonic crustacea based on the rate of chitin synthesis. J. Plankton Res., 16: 961–976. [CSA]

Sanderson, H. 2002. Pesticide studies-Replicability of micro/ mesocosms. Environ. Sci. Pollut. Res., 9: 429–435. [CSA]

Sastri, A. R. and Roff, J. C. 2000. Rate of chitobiase degradation as a measure of development rate in planktonic crustacea. Can. J. Fish. Aquat. Sci., 57: 1965–1968. [CROSSREF][CSA]

Thorp, J. H. and Corich, A. P. 1991. Ecology and Classification of North American Freshwater Invertebrates, Boston, MA: Academic Press Inc..

Underwood, A. J. 1994. On Beyond BACI: sampling designs that might reliably detect environmental disturbances. Ecol. Appl., 4: 3–15. [CSA]

Underwood, A. J. and Chapman, M. G. 2003. Power, precaution, Type II error and sampling design in assessment of environment impacts. J. Exp. Mar. Biol. Ecol., 296: 49–70. [CROSSREF][CSA]

Vrba, J. and Machacek, J. 1994. Release of dissolved extracellular β-N-acetylglucosaminidase during crustacean molting. Limnol. Oceanogr., 39: 712–716. [CSA]

Vrba, J., Nedoma, J., Simek, K. and Seda, J. 1992. Microbial decomposition of polymerorganic matter related to plankton development in a reservoir: activity of α-, β-glucosidase, and β -N-acetylglucosaminidase and uptake of N-acetylglucosamine. Archiv. fur Hydrobiol., 126: 193–211. [CSA]

Vrba, J., Simek, K., Nedoma, J. and Hartman, P. 1993. 4-methylumbellifery-β -N-acetylglucosaminide hydrolysis by a high affinity enzyme, a putative marker of protozoan bacterivory. Appl. Environ. Microbiol., 59: 3091–3101. [CSA]

Vrba, J., Callier, C., Bittl, T., Simek, K., Bertoni, R., Filandr, P., Hartman, P., Hejzlar, J., Macek, M. and Nedoma, J. 2004. Are bacteria the major producers of extracellular glycolytic enzymes in aquatic environments?. Inter. Rev. Hydrobiol., 89(1): 102–117. [CROSSREF][CSA]

Webster, R. J. and Ehrman, T. P. 1996. “Solute dynamics”. In Methods in Stream Ecology, Edited by: Hauer, F. R. and Lamberti, G. A. 145–160. San Diego, California, , USA: Academic Press.

Zou, E. M. and Fingerman, M. 1999a. Effects of the estrogenic agents on chitobiase activity in the epidermis and hepatopancreas of the fiddler crab, Uca pugilator. Ecotoxicol. Environ. Safe., 42: 185–190. [CROSSREF][CSA]

Zou, E. M. and Fingerman, M. 1999b. Effects of exposure to diethyl phthalate, 4-(tert)-octylphenol, and 2,4,5-trichlorobiphenyl on activity of chitobiase in the epidermis and hepatopancreas of the fiddler crab, Uca pugilator. Comp. Biochem. Physiol., 122C: 115–120. [CSA]

Zou, E. M. and Fingerman, M. 1999c. Chitobiase activity in the epidermis and hepatopancreas of the fiddler crab Uca pugilator during the molting cycle. Mar. Biol., 133: 97–101. [CROSSREF][CSA]

Published

2005-10-01