Influence of environmental conditions on late-summer cyanobacterial abundance in Saginaw Bay, Lake Huron
Keywords:
Blue-green algae, Laurentian Great Lakes, Microcystis , phosphorus, phytoplanktonAbstract
The relationships among environmental conditions and phytoplankton assemblages were characterized during late summer (2003-2005) in Saginaw Bay, Lake Huron. Differences among sampling stations, arising primarily from spatial disparities in water-column optical properties and nutrient availability, were evident. Cyanobacteria and diatoms dominated phytoplankton assemblages, with the greatest total chlorophyll a concentrations occurring at the innermost portions of the Bay. Microcystis abundance was greatest in the Bay's upper reaches and decreased with increasing distance from the mouth of the Saginaw River. A suite of variables, indicative of annually-distinct meteorological and hydrological conditions and phosphorus-laden inflows, were identified to (collectively) best ‘group’ stations in a manner consistent with that of phylogenetic-group chlorophyll a concentrations and cyanobacterial biovolumes. However, a great deal of variability between abiotic and biotic patterns remained unexplained and several abiotic variables singularly corresponded with Microcystis abundance. Taken together, it appears that multiple environmental conditions (including annual/episodic meteorological patterns, seasonal/intermittent riverine inflows, annual phosphorus loading, etc.) interact with taxon-specific physiological traits to holistically influence late-summer phytoplankton abundance throughout inner Saginaw Bay.
References
Berges, J. A. and Harrison, P. J. 1995. Relationships between nitrate reductase activity and rates of growth and nitrate incorporation under steady-state light or nitrate limitation in the marine diatom Thalassiosira pseudonana (Bacillariophyceae). J. Phycol., 31: 85–95.
Bierman, V. J., Dolan, D. M., Kasprzyk, R. and Clark, J. L. 1984. Retrospective analysis of the response of Saginaw Bay, Lake Huron, to reductions in phosphorus loadings. Environ. Sci. Technol., 18: 23–31.
Bierman, V. J., Kaur, J., DePinto, J. V., Feist, T. and Dilks, D. 2005. Modeling the role of zebra mussels in the proliferation of blue-green algae in Saginaw Bay, Lake Huron. J. Great Lakes Res., 31: 32–55.
Budd, J. W., Drummer, T. D., Nalepa, T. F. and Fahnenstiel, G. L. 2001. Remote sensing of biotic effects: zebra mussels (Dreissena polymorpha) influence on water clarity in Saginaw Bay, Lake Huron. Limnol. Oceanogr., 46: 213–223.
Clarke, K R. and Gorley, R N. 2006. PRIMER v6: User Manual/Tutorial, Plymouth, , United Kingdom: Primer-E, LTD..
Clarke, K R. and Warwick, R M. 2001. Change in marine communities: An approach to statistical analyses and interpretation, , 2nd ed, Plymouth, , United Kingdom: Primer-E.
Fahnenstiel, G. L., Beckmann, C., Lohrenz, S. E., Millie, D. F., Schofield, O M.E. and McCormick, M. J.M. 2002. Standard Niskin and Van Dorn bottles inhibit phytoplankton photosynthesis in Lake Michigan. Verh Internat Verein Limnol, 28: 376–380.
Fahnenstiel, G. L., Bridgeman, T. B., Lang, G. A., McCormick, M. J. and Nalepa, T. F. 1995. Phytoplankton productivity in Saginaw Bay, Lake Huron: Effects of zebra mussel (Dreissena polymorpha) colonization. J. Great Lakes Res., 21: 465–75.
Fahnenstiel, G. L., Krause, A. E., McCormick, M. J., Carrick, H. J. and Schelske, C. L. 1998. The structure of the planktonic food-web in the St. Lawrence Great Lakes. J. Great Lakes Res., 24: 531–554.
Fahnenstiel, G L., Millie, D. F., Dyble, J., Rediske, R., Litaker, L. W., Tester, P. A. and McCormick, M. J. 2008. Factors affecting microcystin concentration and cell quota in Saginaw Bay, Lake Huron. Aquat. Ecosyst. Health Mgmt, 11(2): 190–195.
Falkowski, P. J. 2000. Rationalizing elemental ratios in unicellular algae. J. Phycol., 36: 3–6.
Hambright, K. D. and Zohary, T. 2000. Phytoplankton species diversity control through competitive exclusion and physical disturbances. Limnol. Oceanogr., 45: 110–122.
Hecky, R. E., Campbell, P. and Hendzel, L. L. 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr., 38: 709–724.
Ihle, T., Jähnichen, S. and Benndorf, J. 2005. Wax and wane of Microcystis (Cyanophyceaea) and microcystins in lake sediments: a case study in Quitzdorf Reservoir (Germany). J. Phycol., 41: 479–488.
Kunz, T. J. and Diehl, S. 2003. Phytoplankton, Light and nutrients along a gradient of mixing depth: a field test of producer-resource theory. Freshwat. Biol., 48: 1050–1063.
Mackey, M. D., Higgins, H. W., Mackey, D. J. and Holdsworth, D. 1998. Algal class abundances in the western equatorial Pacific: estimation from HPLC measurements of chloroplast pigments using CHEMTAX. Deep Sea Res., 45: 1441–68.
Mackey, M., Mackey, D., Higgins, H. and Wright, S. 1996. CHEMTAX - a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser., 144: 265–283.
Millie, D. F., Ingram, D. A. and Dionigi, C. P. 1990. Pigment and photosynthetic responses of Oscillatoria agardhii (Cyanophyta) to photon flux density and spectral quality. J. Phycol., 26: 660–666.
Millie, D. F, Paerl, H. W. and Hurley, J. P. 1993. Microalgal pigment assessments using high-performance liquid chromatography: a synopsis of organismal and ecological applications. Can. J. Fish. Aquat. Sci., 50: 2513–27.
Millie, D F., Fahnenstiel, G L., Carrick, H J., Lohrenz, S E. and Schofield, O. M. E. 2002. Phytoplankton pigments in coastal Lake Michigan: distributions during the spring isothermal period and relation with episodic sediment resuspension. J. Phycol., 38: 639–648.
Millie, D. F., Fahnenstiel, G. L., Lohrenz, S. E., Carrick, H. J., Johengen, T. H. and Schofield, O. M. E. 2003. Physical-biological coupling in southern Lake Michigan: influence of episodic resuspension on phytoplankton. Aquat. Ecol., 37: 393–408.
Millie, D. F., Pigg, R., Tester, P. A., Dyble, J., Litaker, R. W., Carrick, H. J. and Fahnenstiel, G. L. 2006. Modeling phytoplankton abundance in Saginaw Bay, Lake Huron: using artificial neural networks to discern functional influence of environmental variables and relevance to a Great Lakes Observing System. J. Phycol., 42: 336–349.
Morris, I. 1981. “Photosynthesis products, physiological state, and phytoplankton growth”. In Physiological bases of phytoplankton ecology, Edited by: Platt, T. Vol. 210, 182–210. Can. Bull. Fish. Aquat. Sci..
Paerl, H. W. 1996. A comparison of cyanobacterial bloom dynamics in freshwater, estuarine, and marine environments. Phycologia, 35(6): 25–35.
Paerl, H. W. and Millie, D. F. 1996. Physiological ecology of toxic aquatic cyanobacteria. Phycologia, 35: 160–167.
Paerl, H. W., Tucker, J. and Bland, P. T. 1983. Carotenoid enhancement and its role in maintaining blue green algal (Microcystis aeruginosa) surface blooms. Limnol. Oceanogr., 8: 847–857.
Redfield, A. C., Ketchum, B. H. and Richards, F. A. 1963. “The influence of organisms on the composition of sea water”. In The Sea, Edited by: Hill, N. 26–77. NY: Wiley-Interscience.
Roy, S., Mohovic, S., Gianesella, S. F. and Schloss, I. 2006. Effects of enhanced UV-B on pigment-based phytoplankton biomass and composition of mesocosm-enclosed natural marine communities from three latitudes. Photochem. Photobiol., 82: 909–922.
Sanudo-Wilhelmy, S. A., Tovar-Sanchez, A., Fu, F.-X., Capone, D. G., Carpenters, E. J. and Hutchins, D. A. 2004. The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry. Nature., 432: 897–901.
Schelske, C. L., Stoermer, E F., Fahnenstiel, G. L. and Haibach, M. 1986. Phosphorus enrichment, silica utilization, and biogeochemical silica depletion in the Great Lakes. Can. J. Fish. Aquat. Sci., 43: 407–415.
Schlüter, L., Lauridsen, T. L., Krogh, G. and Jørgensen, T. 2006. Identification and quantification of phytoplankton groups in lakes using new pigment ratios – a comparison between pigment analysis by HPLC and microscopy. Freshwat. Biol., 51: 1474–1485.
Syrett, P. J. 1981. “Nitrogen metabolism of microalgae”. In Physiological bases of phytoplankton ecology, Edited by: Platt, T. Vol. 210, 182–210. Can. Bull. Fish. Aquat. Sci..
Vanderhoef, L. N., Huang, C. Y., Musil, R. and Williams, J. 1974. Nitrogen fixation (acetylene reduction) by phytoplankton in Green Bay, Lake Michigan, in relation to nutrient concentrations. Limnol. Oceanogr., 19: 119–125.
Vanderploeg, H. A., Liebig, J. R., Carmichael, W. W., Agy, M. A., Johengen, T. H., Fahnenstiel, G. L. and Nalepa, T. F. 2001. Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can. J. Fish. Aquat. Sci., 58: 12080–1221.
Videau, C. 1987. Primary production and physiological state of phytoplankton at the Ushant tidal front (west coast of Brittany, France). Mar. Ecol. Prog. Ser., 35: 141–151.
Wright, S and Jeffrey, S. 2006. “Pigment markers for phytoplankton production”. In Marine Organic Matter: Biomarkers, isotopes and DNA, Edited by: Volkman, J. 71–104. Berlin: Springer-Verlag.
Wright, S. W., Thomas, D. P., Marchant, H. J., Higgins, H. W., Mackey, M. D. and Mackey, D. J. 1996. Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using ‘CHEMTAX’ matrix factorization program. Mar. Ecol. Prog. Ser., 144: 285–98.
Zohary, T. and Robarts, R. D. 1989. Diurnal mixed layers and the long-term dominance of Microcystis aeruginosa. J. Plank. Res., 11: 25–48.
Zohary, T. and Robarts, R. D. 1990. Hyperscums and the population dynamics of Microcystis aeruginosa. J. Plank. Res., 12: 423–432.
Published
Issue
Section
License
Manuscripts must be original. They must not be published or be under consideration for publication elsewhere, in whole or in part. It is required that the lead author of accepted papers complete and sign the MSU Press AEHM Author Publishing Agreement and provide it to the publisher upon acceptance.