Influence of environmental conditions on late-summer cyanobacterial abundance in Saginaw Bay, Lake Huron

Authors

  • D. F. Millie
  • G. L. Fahnenstiel
  • J. Dyble
  • R. Pigg
  • R. Rediske Annis Water Resources Institute, Grand Valley State University, Muskegon, MI 49441, USA
  • D. M. Klarer Old Woman Creek National Estuarine Research Reserve, Division of Wildlife, Ohio Department of Natural Resources, Huron, OH 44839, USA
  • R. W. Litaker
  • P. A. Tester

Keywords:

Blue-green algae, Laurentian Great Lakes, Microcystis , phosphorus, phytoplankton

Abstract

The relationships among environmental conditions and phytoplankton assemblages were characterized during late summer (2003-2005) in Saginaw Bay, Lake Huron. Differences among sampling stations, arising primarily from spatial disparities in water-column optical properties and nutrient availability, were evident. Cyanobacteria and diatoms dominated phytoplankton assemblages, with the greatest total chlorophyll a concentrations occurring at the innermost portions of the Bay. Microcystis abundance was greatest in the Bay's upper reaches and decreased with increasing distance from the mouth of the Saginaw River. A suite of variables, indicative of annually-distinct meteorological and hydrological conditions and phosphorus-laden inflows, were identified to (collectively) best ‘group’ stations in a manner consistent with that of phylogenetic-group chlorophyll a concentrations and cyanobacterial biovolumes. However, a great deal of variability between abiotic and biotic patterns remained unexplained and several abiotic variables singularly corresponded with Microcystis abundance. Taken together, it appears that multiple environmental conditions (including annual/episodic meteorological patterns, seasonal/intermittent riverine inflows, annual phosphorus loading, etc.) interact with taxon-specific physiological traits to holistically influence late-summer phytoplankton abundance throughout inner Saginaw Bay.

References

Berges, J. A. and Harrison, P. J. 1995. Relationships between nitrate reductase activity and rates of growth and nitrate incorporation under steady-state light or nitrate limitation in the marine diatom Thalassiosira pseudonana (Bacillariophyceae). J. Phycol., 31: 85–95.

Bierman, V. J., Dolan, D. M., Kasprzyk, R. and Clark, J. L. 1984. Retrospective analysis of the response of Saginaw Bay, Lake Huron, to reductions in phosphorus loadings. Environ. Sci. Technol., 18: 23–31.

Bierman, V. J., Kaur, J., DePinto, J. V., Feist, T. and Dilks, D. 2005. Modeling the role of zebra mussels in the proliferation of blue-green algae in Saginaw Bay, Lake Huron. J. Great Lakes Res., 31: 32–55.

Budd, J. W., Drummer, T. D., Nalepa, T. F. and Fahnenstiel, G. L. 2001. Remote sensing of biotic effects: zebra mussels (Dreissena polymorpha) influence on water clarity in Saginaw Bay, Lake Huron. Limnol. Oceanogr., 46: 213–223.

Clarke, K R. and Gorley, R N. 2006. PRIMER v6: User Manual/Tutorial, Plymouth, , United Kingdom: Primer-E, LTD..

Clarke, K R. and Warwick, R M. 2001. Change in marine communities: An approach to statistical analyses and interpretation, , 2nd ed, Plymouth, , United Kingdom: Primer-E.

Fahnenstiel, G. L., Beckmann, C., Lohrenz, S. E., Millie, D. F., Schofield, O M.E. and McCormick, M. J.M. 2002. Standard Niskin and Van Dorn bottles inhibit phytoplankton photosynthesis in Lake Michigan. Verh Internat Verein Limnol, 28: 376–380.

Fahnenstiel, G. L., Bridgeman, T. B., Lang, G. A., McCormick, M. J. and Nalepa, T. F. 1995. Phytoplankton productivity in Saginaw Bay, Lake Huron: Effects of zebra mussel (Dreissena polymorpha) colonization. J. Great Lakes Res., 21: 465–75.

Fahnenstiel, G. L., Krause, A. E., McCormick, M. J., Carrick, H. J. and Schelske, C. L. 1998. The structure of the planktonic food-web in the St. Lawrence Great Lakes. J. Great Lakes Res., 24: 531–554.

Fahnenstiel, G L., Millie, D. F., Dyble, J., Rediske, R., Litaker, L. W., Tester, P. A. and McCormick, M. J. 2008. Factors affecting microcystin concentration and cell quota in Saginaw Bay, Lake Huron. Aquat. Ecosyst. Health Mgmt, 11(2): 190–195.

Falkowski, P. J. 2000. Rationalizing elemental ratios in unicellular algae. J. Phycol., 36: 3–6.

Hambright, K. D. and Zohary, T. 2000. Phytoplankton species diversity control through competitive exclusion and physical disturbances. Limnol. Oceanogr., 45: 110–122.

Hecky, R. E., Campbell, P. and Hendzel, L. L. 1993. The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol. Oceanogr., 38: 709–724.

Ihle, T., Jähnichen, S. and Benndorf, J. 2005. Wax and wane of Microcystis (Cyanophyceaea) and microcystins in lake sediments: a case study in Quitzdorf Reservoir (Germany). J. Phycol., 41: 479–488.

Kunz, T. J. and Diehl, S. 2003. Phytoplankton, Light and nutrients along a gradient of mixing depth: a field test of producer-resource theory. Freshwat. Biol., 48: 1050–1063.

Mackey, M. D., Higgins, H. W., Mackey, D. J. and Holdsworth, D. 1998. Algal class abundances in the western equatorial Pacific: estimation from HPLC measurements of chloroplast pigments using CHEMTAX. Deep Sea Res., 45: 1441–68.

Mackey, M., Mackey, D., Higgins, H. and Wright, S. 1996. CHEMTAX - a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser., 144: 265–283.

Millie, D. F., Ingram, D. A. and Dionigi, C. P. 1990. Pigment and photosynthetic responses of Oscillatoria agardhii (Cyanophyta) to photon flux density and spectral quality. J. Phycol., 26: 660–666.

Millie, D. F, Paerl, H. W. and Hurley, J. P. 1993. Microalgal pigment assessments using high-performance liquid chromatography: a synopsis of organismal and ecological applications. Can. J. Fish. Aquat. Sci., 50: 2513–27.

Millie, D F., Fahnenstiel, G L., Carrick, H J., Lohrenz, S E. and Schofield, O. M. E. 2002. Phytoplankton pigments in coastal Lake Michigan: distributions during the spring isothermal period and relation with episodic sediment resuspension. J. Phycol., 38: 639–648.

Millie, D. F., Fahnenstiel, G. L., Lohrenz, S. E., Carrick, H. J., Johengen, T. H. and Schofield, O. M. E. 2003. Physical-biological coupling in southern Lake Michigan: influence of episodic resuspension on phytoplankton. Aquat. Ecol., 37: 393–408.

Millie, D. F., Pigg, R., Tester, P. A., Dyble, J., Litaker, R. W., Carrick, H. J. and Fahnenstiel, G. L. 2006. Modeling phytoplankton abundance in Saginaw Bay, Lake Huron: using artificial neural networks to discern functional influence of environmental variables and relevance to a Great Lakes Observing System. J. Phycol., 42: 336–349.

Morris, I. 1981. “Photosynthesis products, physiological state, and phytoplankton growth”. In Physiological bases of phytoplankton ecology, Edited by: Platt, T. Vol. 210, 182–210. Can. Bull. Fish. Aquat. Sci..

Paerl, H. W. 1996. A comparison of cyanobacterial bloom dynamics in freshwater, estuarine, and marine environments. Phycologia, 35(6): 25–35.

Paerl, H. W. and Millie, D. F. 1996. Physiological ecology of toxic aquatic cyanobacteria. Phycologia, 35: 160–167.

Paerl, H. W., Tucker, J. and Bland, P. T. 1983. Carotenoid enhancement and its role in maintaining blue green algal (Microcystis aeruginosa) surface blooms. Limnol. Oceanogr., 8: 847–857.

Redfield, A. C., Ketchum, B. H. and Richards, F. A. 1963. “The influence of organisms on the composition of sea water”. In The Sea, Edited by: Hill, N. 26–77. NY: Wiley-Interscience.

Roy, S., Mohovic, S., Gianesella, S. F. and Schloss, I. 2006. Effects of enhanced UV-B on pigment-based phytoplankton biomass and composition of mesocosm-enclosed natural marine communities from three latitudes. Photochem. Photobiol., 82: 909–922.

Sanudo-Wilhelmy, S. A., Tovar-Sanchez, A., Fu, F.-X., Capone, D. G., Carpenters, E. J. and Hutchins, D. A. 2004. The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry. Nature., 432: 897–901.

Schelske, C. L., Stoermer, E F., Fahnenstiel, G. L. and Haibach, M. 1986. Phosphorus enrichment, silica utilization, and biogeochemical silica depletion in the Great Lakes. Can. J. Fish. Aquat. Sci., 43: 407–415.

Schlüter, L., Lauridsen, T. L., Krogh, G. and Jørgensen, T. 2006. Identification and quantification of phytoplankton groups in lakes using new pigment ratios – a comparison between pigment analysis by HPLC and microscopy. Freshwat. Biol., 51: 1474–1485.

Syrett, P. J. 1981. “Nitrogen metabolism of microalgae”. In Physiological bases of phytoplankton ecology, Edited by: Platt, T. Vol. 210, 182–210. Can. Bull. Fish. Aquat. Sci..

Vanderhoef, L. N., Huang, C. Y., Musil, R. and Williams, J. 1974. Nitrogen fixation (acetylene reduction) by phytoplankton in Green Bay, Lake Michigan, in relation to nutrient concentrations. Limnol. Oceanogr., 19: 119–125.

Vanderploeg, H. A., Liebig, J. R., Carmichael, W. W., Agy, M. A., Johengen, T. H., Fahnenstiel, G. L. and Nalepa, T. F. 2001. Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can. J. Fish. Aquat. Sci., 58: 12080–1221.

Videau, C. 1987. Primary production and physiological state of phytoplankton at the Ushant tidal front (west coast of Brittany, France). Mar. Ecol. Prog. Ser., 35: 141–151.

Wright, S and Jeffrey, S. 2006. “Pigment markers for phytoplankton production”. In Marine Organic Matter: Biomarkers, isotopes and DNA, Edited by: Volkman, J. 71–104. Berlin: Springer-Verlag.

Wright, S. W., Thomas, D. P., Marchant, H. J., Higgins, H. W., Mackey, M. D. and Mackey, D. J. 1996. Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using ‘CHEMTAX’ matrix factorization program. Mar. Ecol. Prog. Ser., 144: 285–98.

Zohary, T. and Robarts, R. D. 1989. Diurnal mixed layers and the long-term dominance of Microcystis aeruginosa. J. Plank. Res., 11: 25–48.

Zohary, T. and Robarts, R. D. 1990. Hyperscums and the population dynamics of Microcystis aeruginosa. J. Plank. Res., 12: 423–432.

Published

2008-06-06