Hydroacoustic measures of Mysis relicta abundance and distribution in Lake Ontario

Authors

  • Lars G. Rudstam Department of Natural Resources and Cornell Biological Field Station, 900 Shackelton Point Road, Bridgeport, NY 13030, U.S.A
  • Ted Schaner Ontario Ministry of Natural Resources, RR # 4, Picton Ontario K0K 2T0, Canada
  • Gideon Gal Kinneret Limnological Laboratory, IOLR, PO Box 447 Migdal, Israel
  • Brent T. Boscarino Department of Natural Resources and Cornell Biological Field Station, 900 Shackelton Point Road, Bridgeport, NY 13030, U.S.A
  • Robert O'Gorman U.S. Geological Survey Biological Resources Division (USGS), Great Lakes Science Center, Lake Ontario Biological Station 17 Lake Street, Oswego, New York 13126, U.S.A.
  • David M. Warner U.S. Geological Survey Biological Resources Division (USGS), Great Lakes Science Center 1451 Green Road, Ann Arbor, MI 48105, U.S.A.
  • Ora E. Johannsson Great Lakes Laboratory for Fisheries and Aquatic Sciences, Department of Fisheries and Oceans, Canada Centre for Inland Waters 867 Lakeshore Road, Burlington, ON L7R 4A6, Canada
  • Kelly L. Bowen Great Lakes Laboratory for Fisheries and Aquatic Sciences, Department of Fisheries and Oceans, Canada Centre for Inland Waters 867 Lakeshore Road, Burlington, ON L7R 4A6, Canada

Keywords:

mysids, biomass, echosounder, 120 kHz

Abstract

Mysis relicta can be observed on echograms as a sound scattering layer when they migrate into the water column at night to feed on zooplankton. However, quantitative measures of mysid abundance with hydroacoustics requires knowledge of mysid target strength (TS), a method of removing fish echoes and contribution from noise, and an understanding of the effect of range on the ability of hydroacoustics to detect mysids (the detection limit). Comparisons of paired net data and acoustics data from July 7, 2005 yielded a mysid TS of −86.3 dB (9 mm animal) and a biomass TS of −58.4 dB (g dry wt)−1. With ambient noise levels (S v of −125 dB at 1 m depth) and this TS, we can detect a mysid density of 1 m−3 at 60 m depth with a signal to noise ratio of 3 dB. We present a method to remove backscattering from both noise and fish and apply this method and the new TS data to whole lake acoustic data from Lake Ontario collected in July 25–31, 2005 with a 120 kHz echosounder as part of the annual standard fish survey in that lake. Mysis abundance was strongly depth dependent, with highest densities in areas with bottom depth > 100 m, and few mysids in areas with bottom depth < 50 m. With the data stratified in five bottom depth strata (> 100 m, 100-75 m, 75–50 m, 50–30 m, < 30 m), the whole-lake average mysid density was 118 m−2 (CV 21%) and the whole-lake average mysid biomass was 0.19 g dry wt m−2 (CV 22%) in July 2005. The CVs of these densities also account for uncertainty in the TS estimates. This is comparable to whole-lake density estimates using vertical net tows in November, 2005 (93 m−2, CV 16%).

References

Arnone, R. A., Nero, R. W., Jech, J. M. and Palma, I. D. 1990. Acoustic imaging of biological and physical processes within Gulf Stream meanders. EOS, 71: 982

Beletsky, D., Saylor, J. H. and Schwab, D. J. 1999. Mean circulation in the Great Lakes. J. Great Lakes Res., 25: 78–93.

Boscarino, B. T., Rudstam, L. G., Mata, S., Gal, G., Johannsson, O. E. and Mills, E. L. 2007. The effects of temperature and predator-prey interactions on the migration behavior and vertical distribution of Mysis relicta. Limnol. Oceanogr., 52: 1599–1613.

Cochrane, N. A., Sameoto, D. D., Herman, A. W. and Neilson, J. 1991. Multiple-frequency acoustic backscattering and zooplankton aggregations in the inner Scotian Shelf basins. Can. J. Fish. Aquat. Sci., 48: 340–355.

David, P. M., Guerin-Ancey, O. and Cluck, J. P. V. 1999. Acoustic discrimination of two zooplankton species (mysid) at 38 and 120 kHz. Deep-Sea Research I, 46: 319–333.

Demer, D. A. 2004. An estimate of error for the CCAMLR 2000 survey estimate of krill biomass. Deep-Sea Research Part II-Topical Studies in Oceanography, 51: 1237–1251.

Eckmann, R. 1998. Allocation of echo integrator output to small larval insect (Chaoborus sp.) and medium-sized (juvenile fish) targets. Fish. Res., 35: 107–113.

Fernandes, P. G., Korneliussen, R. J., Lebourges-Dhaussy, A., Masse, J., Iglesias, M., Diner, N., Ona, E., Knutsen, T., Gajate, J. and Ponce, R. 2006. The SIMFAMI project: Species identification methods from acoustic multifrequency information Final report to the EC No. Q5RS-2001–02054. FRS Marine Laboratory, Aberdeen, U. K.

Foote, K. G. 1983. Linearity of fisheries acoustics, with addition theorem. J. Acoust. Soc. Am., 73: 1932–1940.

Foote, K. G. and Stanton, T. K. 2000. “Acoustical methods”. In ICES Zooplankton methodology manual, Edited by: Harris, R. P., Wiebe, P. H., Lenz, J., Skjoldal, H. R. and Huntley, M. 223–258. London: Academic Press.

Gal, G., Loew, E. R., Rudstam, L. G. and Mohammadian, A. M. 1999a. Light and diel vertical migration: spectral sensitivity and light avoidance by Mysis relicta. Can. J. Fish. Aquat. Sci., 56: 311–322.

Gal, G., Rudstam, L. G. and Greene, C. H. 1999b. Acoustic characterization of Mysis relicta. Limnol. Oceanogr., 44: 371–381.

Gal, G., Rudstam, L. G. and Johannsson, O. E. 2004. Predicting Mysis relicta vertical distribution in Lake Ontario. Arch. Hydrobiol., 159: 1–23.

Gal, G., Rudstam, L. G., Mills, E. L., Lantry, J. R., Johannsson, O. E. and Greene, C. H. 2006. Mysid and fish zooplanktivory in Lake Ontario: quantification of direct and indirect effects. Can. J. Fish. Aquat. Sci., 63: 2734–2747.

Hembre, L. K. and Megard, R. O. 2003. Seasonal and diel patchiness of a Daphnia population: an acoustic analysis. Limnol. Oceanogr., 48: 2221–2233.

Hewitt, R. P., Demer, D. A. and Emery, J. H. 2003. An 8-year cycle in krill biomass density inferred from acoustic surveys conducted in the vicinity of the South Shetland Islands during the austral summers of 1991-1992 through 2001-2002. Aquatic Living Resources, 16: 205–213.

Holbrook, B. V., Hrabik, T. R., Branstrator, D. K., Yule, D. L. and Stockwell, J. D. 2006. Hydroacoustic estimation of zooplankton biomass at two shoal complexes in the Apostle Islands Region of Lake Superior. J. Great Lakes Res., 32: 680–696.

Johannsson, O. E., Rudstam, L. G. and Lasenby, D. C. 1994. Mysis relicta: Assessment of a metalimnetic feeding strategy and implications for competition with fish in Lakes Ontario and Michigan. Can. J. Fish. Aquat. Sci., 51: 2591–2602.

Johannsson, O. E. 1995. Response of Mysis relicta population dynamics and productivity to spatial and seasonal gradients in Lake Ontario. Can. J. Fish. Aquat. Sci., 52: 1509–1522.

Johannsson, O. E., Rudstam, L. G., Gal, G. and Mills, E. L. 2003. “Mysis relicta in Lake Ontario: population dynamics, trophic linkages and further questions”. In State of Lake Ontario (SOLO)-Past, present and future, Edited by: Munawar, M. 257–287. Leiden, , the Netherlands: Backhuys Publishers.

Knudsen, F. R., Larsson, P. and Jakobsen, P. J. 2006. Acoustic scattering from a larval insect (Chaoborus flavicans) at six echosounder frequencies: Implication for acoustic estimates of fish abundance. Fish. Res., 79: 84–89.

Korneliussen, R. J. 2000. Measurement and removal of echo integration noise. ICES J. Mar. Sci., 57: 1204–1217.

Korneliussen, R. J. and Ona, E. 2003. Synthetic echograms generated from the relative frequency response. ICES J. Mar. Sci., 60: 636–640.

Kubecka, J., Frouzova, J., Cech, M., Peterka, J., Ketelaars, H. A. M., Wagenwoort, A. J. and Papacek, M. 2000. Hydroacoustic assessment of pelagic stages of freshwater insects. Aquatic Living Resources, 13: 361–366.

Kuns, M. M. and Sprules, W. G. 2000. Zooplankton production in Lake Ontario: a multistrata approach. Can. J. Fish. Aquat. Sci., 57: 2240–2247.

Lasenby, D. C., Northcote, T. G. and Fürst, M. 1986. Theory, practice, and effects of Mysis relicta introductions to North American and Scandinavian lakes. Can. J. Fish. Aquat. Sci., 43: 1227–1284.

Levy, D. A. 1991. Acoustic analysis of diel vertical migration behavior of Mysis relicta and kokanee (Onchorhynchus nerka) within Okanagan Lake, British Columbia. Can. J. Fish. Aquat. Sci., 48: 67–72.

Malinen, T., Tuomaala, A. and Peltonen, H. 2005. Hydroacoustic fish stock assessment in the presence of dense aggregations of Chaoborus larvae. Can. J. Fish. Aquat. Sci., 62: 245–249.

Mason, D. M., Goyke, A., Brandt, S. B. and Jech, J. M. 2001. “Acoustic fish stock assessment in the Laurentian Great Lakes”. In The Great Lakes of the World Food-web, health and integrity, Edited by: Munawar, M. and Hecky, R. E. 317–340. Leiden, , the Netherlands: Backhuys Publishers.

McKelvey, D. R. and Wilson, C. D. 2006. Discriminant classification of fish and zooplankton backscattering at 38 and 120 kHz. Trans. Am. Fish. Soc., 135: 488–499.

Megard, R. O., Kuns, M. M., Whiteside, M. C. and Downing, J. A. 1997. Spatial distributions of zooplankton during coastal upwelling in western Lake Superior. Limnol. Oceanogr., 42: 827–840.

Melnik, N. G., Timoshkin, O. A., Sideleva, V. G., Pushkin, S. V. and Mamylov, V. S. 1993. Hydroacoustic measurement of the density of the Baikal macrozooplankter Macrohectopus branickii. Limnol. Oceanogr., 38: 425–434.

Mills, E. L., Casselman, J. M., Dermott, R., Fitzsimons, J. D., Gal, G., Holeck, K. T., Hoyle, J. A., Johannsson, O. E., Lantry, B. F., Makarewicz, J. C., Millard, E. S., Munawar, M., Munawar, I. F., O'Gorman, R., Owens, R. W., Rudstam, L. G., Schaner, T. and Stewart, T. J. 2003. Lake Ontario: Food web dynamics in a changing ecosystem (1970–2000). Can. J. Fish. Aquat. Sci., 60: 471–490.

Mood, A. M., Graybill, F. A. and Boes, D. C. 1974. Introduction to the theory of statistics. 3rd Edition, New York, NY: McGraw-Hill.

Morgan, M. D. 1976. Life history and annual net secondary productivity of Mysis relicta in west central Lake Michigan, M.Sc. thesis Milwaukee: Department of Zoology, University of Wisconsin.

Nero, R. W. and Davies, J. J. 1982. Comparison of two sampling methods for estimating the abundance and distribution of Mysis relicta. Can. J. Fish. Aquat. Sci., 35: 1572–1579.

Parker Stetter, S. L., Rudstam, L. G., Stritzel Thomson, J. L. and Parrish, D. L. 2006. Hydroacoustic separation of rainbow smelt (Osmerus mordax) age groups in Lake Champlain. Fish. Res., 82: 176–185.

Rose, G., Gauthier, S. and Lawson, G. 2000. Acoustic surveys in the full Monte: simulating uncertainty. Aquatic Living Resources, 13: 367–372.

Rudstam, L. G., Danielsson, K., Hansson, S. and Johansson, S. 1989. Diel vertical migration and feeding patterns ofMysis mixta (Crustacea, Mysidacea) in the Baltic Sea. Mar. Biol., 101: 43–52.

Rudstam, L. G., Melnik, N. G., Timoshkin, O. A., Hansson, S., Pushkin, S. V. and Nemov, V. 1992. Diel dynamics of an aggregation of Macrohectopus branickii (Dyb.) (Amphipoda Gammaridae) in the Barguzin Bay, Lake Baikal, Russia. J. Great Lakes Res., 18: 286–297.

Rudstam, L. G., Parker, S. L., Einhouse, D. W., Witzel, L. D., Warner, D. M., Stritzel, J. L., Parrish, D. L. and Sullivan, P. J. 2003. Application of in situ target strength estimations in lakes: examples from rainbow smelt surveys in Lakes Erie and Champlain. ICES J. Mar. Sci., 60: 500–507.

Schaner, T. and Lantry, B. F. 1999. “Pelagic planktivores”. In Lake Ontario Mangement Unit 1998 Annual Report section 1, Albany, NY: New York State Department of Environmental Conservation.

Simard, Y. and Lavoie, D. 1999. The rich krill aggregation of the Saguenay St Lawrence Marine Park: hydroacoustics and geostatistical biomass estimates, structure, variability, and significance for whales. Can. J. Fish. Aquat. Sci., 56: 1182–1197.

Simmonds, J. and MacLennan, D. 2005. Fisheries acoustics. Theory and practice, Oxford, UK: Blackwell.

Simmonds, E. J., Williamson, N. J., Gerlotto, F. and Aglen, A. 1992. Acoustic survey design and analysis procedures: a comprehensive review of current practice ICES Cooperative Research Report 187. Charlottenlund, Denmark

SonarData. 2004. Echoview 3.0, Hobart, Tasmania, , Australia: SonarData Pty Ltd..

Stanton, T. K. and Chu, D. 1993. Average echoes from randomly oriented random-length finite cylinders: zooplankton models. J. Acoust. Soc. Am., 94: 3463–3472.

Swartzman, G., Brodeur, R., Napp, J., Walsh, D., Hewitt, R., Demer, D., Hunt, G. and Logerwell, E. 1999. Relating spatial distributions of acoustically determined patches of fish and plankton: data viewing, image analysis, and spatial proximity. Can. J. Fish. Aquat. Sci., 56: 188–198.

Teraguchi, M., Hasler, A. D. and Beeton, A. M. 1975. Seasonal changes in the response of Mysis relicta Lovén to illumination. Vereinigung fur theoretische and angewandte Limnologie, Verhandlungen, 19: 2989–3000.

Trevorrow, M. V. and Tanaka, Y. 1997. Acoustic and in situ measurements of freshwater amphipods (Jesogammarus annandalei) in Lake Biwa, Japan. Limnol. Oceanogr., 42: 121–132.

Virden, W. T., Warren, J. S., Holcombe, T. L. and Reid, D. F. 2000. Bathymetry of Lake Ontario CD–ROM, volume G2, version 1, Data Announcement 2000-MGG-01, Boulder, CO: National Geophysical Data Center, World Data Center for Marine Geology and Geophysics.

Warner, D. M., Claramunt, R. M., Faul, C. and O'Brien, T. 2006. Status of pelagic prey in Lake Michigan 1992-2005, Ann Arbor, MI: USGS. In: Report to the Lake Michigan Committee, March 2006.—Great Lakes Science Center

Warner, D. M., Rudstam, L. G. and Klumb, R. A. 2002. In situ target strength of alewives in freshwater. Trans. Am. Fish. Soc., 131: 212–223.

Wiebe, P. H., Greene, C. H., Stanton, T. K. and Burczynski, J. 1990. Sound scattering by live zooplankton and micronekton: empirical studies with a dual-beam acoustical system. J. Acoust. Soc. Am., 88: 2346–2360.

Published

2008-12-09