Plant-promoted dissipation of four submerged macrophytes to phenanthrene

Authors

  • Li Jia-hua Department of Municipal Engineering, Southeast University, Nanjing, 210018, P.R. China
  • Guo Hong-yan State Key Laboratory of Pollution Control and Resource Reuse Research, School of Environment, Nanjing University, Nanjing, 210093, P.R. China
  • Wang Xiao-rong State Key Laboratory of Pollution Control and Resource Reuse Research, School of Environment, Nanjing University, Nanjing, 210093, P.R. China
  • Wong Ming Hong Croucher Institute for Environmental Sciences and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, P.R. China
  • Wang ShiHe Department of Municipal Engineering, Southeast University, Nanjing, 210018, P.R. China
  • Yin Da-qiang State Key Laboratory of Pollution Control and Resource Reuse Research, School of Environment, Nanjing University, Nanjing, 210093, P.R. China
  • Yin Ying State Key Laboratory of Pollution Control and Resource Reuse Research, School of Environment, Nanjing University, Nanjing, 210093, P.R. China
  • Zhang Jingfei School of Earth Sciences, Nanjing University, Nanjing, 210093, P.R. China

Keywords:

interaction, remediation, physiological responses, polycyclic aromatic hydrocarbons

Abstract

In order to investigate the function of submerged aquatic plants for recovery of water polluted by typical organic pollutants, and select potential plants for phytoremediation of polycyclic aromatic hydrocarbons contaminated water, removal efficiencies of four submerged macrophytes to phenanthrene were investigated, following 40-day exposure to phenanthrene solutions in an outdoor-simulated experiment. During the exposure period, phenanthrene concentration in water, sediments and the roots of submerged macrophytes were observed. Results showed that Elodeacanadensi exhibited the highest concentrations in roots, while Ceratophyllum demersum contained the lowest among these four submerged macrophytes. The disparity of phenanthrene in roots would come from plant properties including the shape and surface area of both shoots and roots. These plants enhanced the remediation of phenanthrene in solution through plant-promoted sedimentation and biodegradation. Potamogetoncrispu and Elodeacanadensi showed the higher performance to remove phenanthrene due to plant-promoted biodegradation.

References

Bolsunovsky, A., Zotina, T. and Bondareva, L. 2005. Accumulation and release of 241 Am by a macrophyte of the Yenisei River (Elodea canadensis). J. Environ. Radioact., 81(1): 33–46.

Chambers, P. A. and Kalff, J. 1985. The influence of sediment composition and irradiance on the growth and morphology of Myriophyllum spicatum L. Aquat. Bot., 22: 253–265.

Chiou, C. T., Sheng, G. Y. and Manes, M. 2001. A partition-limited model for the plant uptake of organic contaminants from soil and water. Environ. Sci. Technol., 35: 1437–1444.

Doong, R. A., Peng, C. K., Sun, Y. C. and Liao, P. L. 2002. Composition and distribution of organochlorine pesticide residues in surface sediments from the Wu-Shi River estuary, Taiwan. Mar. Pollut. Bull., 45: 246–53.

Gao, Y. Z. and Zhu, L. Z. 2004. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere, 55: 1169–1178.

Gregory, P. J. 2006. Plant Roots: Growth, Activity and Interaction with Soils, Oxford, UK: Blackwell.

Grimmer, G., ed. 1983. Environmental Carcinogens: Polycyclic Aromatic Hydrocarbons, Boca Raton, FL: CRC Press.

Joner, E. J. and Leyval, C. 2003. Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of arbuscular Mycorrhiza. Environ. Sci. Technol., 37: 2371–2375.

Knezovich, J. P., Harrison, F. L. and Wilhelm, R. G. 1987. The bioavailability of sediment-sorbed organic chemicals: a review. Water Air Soil Pollut., 32: 233–245.

King, J. K., Harmon, S. M., Fu, T. T. and Gladden, J. B. 2002. Mercury removal, methylmercury formation, and sulfate-reducing bacteria profiles in wetland mesocosms. Chemosphere, 46(6): 859–870.

Kipopoulou, A. M., Manoli, E. and Samara, C. 1999. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environ. Pollut., 106: 369–380.

Lesage, E., Mundia, C., Rousseau, D. P. L., Van de, M. A. M. K., Du, L. G., Meers, E., Tack, F. M. G., De Pauw, N. and Verloo, M. G. 2007. Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecol. Eng., 30(4): 320–325.

Maskaoui, K., Zhou, J. L., Hong, H. S. and Zhang, Z. L. 2002. Contamination by polycyclic aromatic hydrocarbons in the Jiulong River Estuary and Western Xiamen Sea, China. Environ. Pollut., 118: 109–122.

Qiu, D. R., Wu, Z. B., Liu, B. Y., Deng, J. Q., Fu, G. P. and He, F. 2001. The restoration of aquatic macrophytes for improvement water quality in a hypertrophic shallow lake in Hubei Province, China. Ecol. Eng., 18: 147–156.

Reilley, K. A., Banks, M. K. and Schwab, A. P. 1996. Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J. Environ. Qual., 25: 212–219.

Rentz, J. A., Alvarez, P. J. J. and Schnoor, J. L. 2005. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation. Environ. Pollu., 136: 477–484.

Simonich, S. L. and Hites, R. A. 1995. Organic pollutant accumulation in vegetation. Environ. Sci. Technol., 29: 2095–2103.

Tao, S., Cui, Y. H., Xu, F. L., Li, B. G., Cao, J., Liu, W. X., Schmitt, G., Wang, X. J., Shen, W. R., Qing, B. P. and Sun, R. 2004. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Sci. Total Environ., 320: 11–24.

Thomas, P. R., Glover, P. and Kalaroopan, T. 1995. An evaluation of pollutant removal from secondary treated sewage effluent using a constructed wetland system. Water Sci. Technol., 32: 87–93.

Voutsa, D. and Samara, C. 1998. Dietary intake of trace elements and polycyclic aromatic hydrocarbons via vegetables grown in an industrial Greek area. Sci. Total Environ., 218: 203–216.

Walker, T. S., Bais, H. P., Grotewold, E. and Vivanco, J. M. 2003. Root exudation and rhizosphere biology. Plant Physiol., 132: 44–51.

Wang, S. R., Jin, X. C., Zhao, H. C. and Wu, F. C. 2008. Phosphate biosorption characteristics of a submerged macrophyte Hydrilla verticillata.. Aquat. Bot., 89(1): 23–26.

Wild, S. R. and Jones, K. C. 1994. The significance of polynuclear aromatic hydrocarbons applied to agricultural soils in sewage sludges in the UK. Waste Manage. Res., 12: 49–59.

Wild, S. R., Berrow, M. L., McGrath, S. P. and Jones, K. C. 1992. Polynuclear aromatic hydrocarbons in crops from long term sewage sludge amended field experiments. Environ. Pollut., 76: 23–31.

Wu, Y., Zhang, J. and Zhu, Z. J. 2003. Polycyclic aromatic hydrocarbons in the sediments of the Yalujiang Estuary, North China. Mar. Pollut. Bull., 46: 619–625.

Yaws, C. L. 1999. Chemical properties handbook, New York: McGraw-Hill.

Zhang, Z. L., Hong, H. S., Zhou, J. L. and Yu, G. 2004. Phase association of polycyclic aromatic hydrocarbons in the Minjiang River Estuary, China. Sci. Total Environ., 323: 71–86.

Published

2009-11-30