Evaluation of small-scale habitat manipulation to reduce the impact of the whirling disease parasite in streams

Authors

  • Kevin G. Thompson Colorado Division of Wildlife, 2300 South Townsend Avenue, Montrose, CO 81401, U.S.A. kevin.thompson@state.co.us

Keywords:

Myxobolus cerebralis , Tubifex tubifex , Brown Trout

Abstract

The effects on trout of the whirling disease parasite Myxobolus cerebralis were evaluated to observe whether they could be ameliorated by intervening with physical habitat manipulations. Physical stream habitat was modified at field sites in Spring Creek and Williams Fork River, Colorado, USA to reduce or eliminate habitat for the invertebrate oligochaete host of  M. cerebralis, Tubifex tubifex. Data were collected before and after habitat modifications on total oligochaete and T. tubifex biomass, actinospore production from oligochaete samples, surface water actinospore concentrations, and prevalence and intensity of myxospore development in Brown Trout, Salmo trutta. Oligochaete biomass estimates lacked precision due to inherently patchy distribution of the target organisms. Oligochaetes quickly re-occupied a portion of habitat at the Williams Fork River site, but oligochaete biomass was depressed for nearly a year at the Spring Creek site. All T. tubifex in Spring Creek belonged to a susceptible lineage, but in the Williams Fork River there was a mix of susceptible and non-susceptible T. tubifex. Actinospore detection in filtered surface water samples showed consistent but minor reduction in density in Williams Fork River and no difference or even higher densities in Spring Creek after habitat modification. Myxospore prevalence and intensity of infection in Brown Trout appeared to decrease in Williams Fork River after habitat modification, but there is evidence that a similar decrease also occurred at a control site in that stream. Spring Creek showed no effect for these metrics. The differing responses may have been influenced by T. tubifex lineage differences. The habitat manipulations did not show sufficient promise to encourage further efforts in Colorado.

References

Arndt, R. E. and Wagner, E. J. 2004. Rapid and slow sand filtration techniques and their efficacy at filtering triactinomyxons of Myxobolus cerebralis from contaminated water. N. Am. J. Aquacult., 66: 261–270.

Arsan, E. L., Atkinson, S. D., Hallett, S. L., Meyers, T. and Bartholomew, J. L. 2007. Expanded geographical distribution of Myxobolus cerebralis: first detections from Alaska. J. Fish Dis., 30: 483–491.

Aston, R. J. 1973. Tubificids and water quality: A review. Environ. Pollut., 5: 1–10.

Baldwin, T. J., Peterson, J. E., McGhee, G. C., Staigmiller, K. D., Motteram, E. S., Downs, C. C. and Stanek, D. R. 1998. Distribution of Myxobolus cerebralis in Montana. J. Aqua. Anim. Health, 19: 361–371.

Bartholomew, J. L., Lorz, H. V., Atkinson, S. D., Hallett, S. L., Stevens, D. G., Holt, R. A., Lujan, K. and Amandi, A. 2007. Evaluation of a Management Strategy to Control the Spread of Myxobolus cerebralis in a Lower Columbia River Tributary. N. Am. J. Fish. Manage., 27: 542–550.

Beauchamp, K. A., Kathman, R. D., McDowell, T. S. and Hedrick, R. P. 2001. Molecular phylogeny of tubificid oligochaetes with special emphasis on Tubifex tubifex (Tubificidae). Mol. Phylogenet. Evol., 19: 216–224.

Beauchamp, K. A., Gay, M., Kelley, G. O., El-Matbouli, M., Kathman, R. D., Nehring, R. B. and Hedrick, R. P. 2002. Prevalence and susceptibility of infection to Myxobolus cerebralis, and genetic differences among populations of Tubifex tubifex. Dis. Aquat. Organ., 51: 113–121.

Beauchamp, K. A., Kelley, G. O., Nehring, R. B. and Hedrick, R. P. 2005. The severity of whirling disease among wild trout corresponds to the differences in genetic composition of Tubifex tubifex populations in central Colorado. J. Parasitol., 91: 53–60.

Beauchamp, K. A., El-Matbouli, M., Gay, M., Georgiadis, M. P., Nehring, R. B. and Hedrick, R. P. 2006. The effect of cohabitation of Tubifex tubifex (Oligochaeta: Tubificidae) populations on infections to Myxobolus cerebralis (Myxozoa: Myxobolidae). J., 91: 1–8. Invertebr. Pathol.

Caton, L. W. 1991. Improved subsampling methods for the EPA “Rapid Bioassessment” benthic protocols. Bull. N. Am. Benth. Soc., 8(3): 317–319.

Downing, D. C., McMahon, T. E., Kerans, B. L. and Vincent, E. R. 2002. Relation of spawning and rearing life history of Rainbow Trout and susceptibility to Myxobolus cerebralis infection in the Madison River, Montana. J. Aqua. Anim. Health, 14: 191–203.

Gilbert, M. A. and Granath, W. O. Jr. 2001. Persistent infection of Myxobolus cerebralis, the causative agent of salmonid whirling disease, in Tubifex tubifex. J. Parasitol, 87: 101–107.

Hedrick, R. P., El-Matbouli, M., Adkison, M. A. and MacConnell, E. 1998. Whirling disease: re-emergence among wild trout. Immunol. Rev., 166: 365–376.

Hedrick, R. P., McDowell, T. S., Mukkatira, K., Georgiadis, M. P. and MacConnell, E. 1999a. Susceptibility of selected inland salmonids to experimentally induced infections with Myxobolus cerebralis, the causative agent of whirling disease. J. Aqua. Anim. Health, 11: 330–339.

Hedrick, R. P., McDowell, T. S., Gay, M., Marty, G. D., Georgiadis, M. P. and MacConnell, E. 1999b. Comparative susceptibility of Rainbow Trout Oncorhynchus mykiss and Brown Trout Salmo trutta to Myxobolus cerebralis, the cause of salmonid whirling disease. Dis. Aquat. Organ., 37: 173–183.

Hedrick, R. P., McDowell, T. S., Mukkatira, K., Georgiadis, M. P. and MacConnell, E. 2001a. Salmonids resistant to Ceratomyxa shasta are susceptible to experimentally induced infections with Myxobolus cerebralis. J. Aqua. Anim. Health, 13: 35–42.

Hedrick, R. P., McDowell, T. S., Mukkatira, K., Georgiadis, M. P. and MacConnell, E. 2001b. Susceptibility of three species of anadromous salmonids to experimentally induced infections with Myxobolus cerebralis, the causative agent of whirling disease. J. Aqua. Anim. Health, 13: 43–50.

Hiner, M. and Moffitt, C. M. 2001. Variation in infections of Myxobolus cerebralis in field-exposed Cutthroat and Rainbow Trout in Idaho. J. Aqua. Anim. Health, 13: 124–132.

Hiner, M. and Moffitt, C. M. 2002. “Modeling Myxobolus cerebralis infections in trout: Associations with habitat variables”. In Whirling disease: reviews and current topics, Edited by: Bartholomew, J. L. and Wilson, J. C. 217–225. Bethesda, Maryland: American Fisheries Society, Symposium 29.

Hofer, B. 1903. Ueber die Drehkrankheit der Regenbogenforelle. (On the whirling disease in Rainbow Trout. In German). Allgemeine Fischerei-Zeitung, 28: 7–8.

Hoffman, G. L. 1974. Disinfection of contaminated water by ultraviolet irradiation, with emphasis on whirling disease (Myxosoma cerebralis) and its effect on fish. T. Am. Fish. Soc., 103: 541–550.

Juget, J. and Lafont, M. 1994. Theoretical habitat templets, species traits, and species richness: aquatic oligochaetes in the Upper Rhone River and its floodplain. Freshwater Bio., 31: 327–340.

Kathman, R. D. and Brinkhurst, R. O. 1999. Guide to the freshwater oligochaetes of North America, Tennessee: Aquatic Resources Center, Thompsons Station.

Koel, T. M., Mahony, D. L., Kinnan, K. L., Rasmussen, C., Hudson, C. J., Murcia, S. and Kerans, B. L. 2006. Myxobolus cerebralis in native Cutthroat Trout of the Yellowstone Lake Ecosystem. J. Aqua. Anim. Health, 18: 157–175.

Lukins, H. J., Zale, A. V. and Barrows, F. T. 2007. A packed-bed filtration system for collection of Myxobolus cerebralis triactinomyxons. J. Aqua. Anim. Health, 19: 234–241.

Markiw, M. E. and Wolf, K. 1974. Myxosoma cerebralis: isolation and concentration from fish skeletal elements – sequential enzymatic digestions and purification by differential centrifugation. J. Fish. Res. Board Can., 31: 15–20.

Nehring, R. B. and Walker, P. G. 1996. Whirling disease in the wild: The new reality in the intermountain west. Fisheries, 21(6): 28–30.

Nehring, R. B., Thompson, K. G. and Hebein, S. 1998. “Impacts of whirling disease on wild trout populations in Colorado”. In T. N. Am. Wildl. Nat. Res. 63, Edited by: Wadsworth, K. G. 82–94. Washington, DC: Wildlife Management Institute.

Nehring, R. B., Thompson, K. G., Shuler, D. L. and James, T. M. 2002. Using sediment core samples to examine the spatial distribution of Myxobolus cerebralis actinospore production in Windy Gap Reservoir, Colorado. N. Am. J. Fish. Manage., 23: 376–384.

O’Grodnick, J. J. 1979. Susceptibility of various salmonids to whirling disease (Myxosoma cerebralis). T. Am. Fish. Soc., 108: 187–190.

Rosgen, D. L. 1994. A classification of natural rivers. Catena, 22: 169–199.

Rosgen, D. L. 2001. The cross-vane, W-weir and J-hook structures: Their description, design and application for stream stabilization and river restoration, Wetlands Engineering & River Restoration 2001. ASCE. Available at http://www.wildlandhydrology.com/assets/cross-vane.pdf. Accessed April 15, 2010

Sandell, T. A., Lorz, H. V., Stevens, D. G. and Bartholomew, J. L. 2001. Dynamics of Myxobolus cerebralis in the Lostine River, Oregon: implications for resident and anadromous salmonids. J. Aqua. Anim. Health, 13: 142–150.

Schisler, G. J., Bergersen, E. P., Walker, P. G., Wood, J. and Epp, J. K. 2001. Comparison of single-round polymerase chain reaction (PCR) and pepsin-trypsin digest PTD) methods for detection of Myxobolus cerebralis. Dis. Aquat. Organ., 45: 109–114.

Shirakashi, S. and El-Matbouli, M. 2009. Myxobolus cerebralis (Myxozoa), the causative agent of whirling disease, reduces fecundity and feeding activity of Tubifex tubifex (Oligochaeta). Parasitology, 136: 603–613.

Steinbach-Elwell, L. C., Kerans, B. L., Rasmussen, C. and Winton, J. R. 2006. Interactions among two strains of Tubifex tubifex (Oligochaeta:Tubificidae) and Myxobolus cerebralis (Myxozoa). Dis. Aquat. Organ., 68: 131–139.

Steinbach-Elwell, L. C., Kerans and Zickovich, J. 2009a. Host–parasite interactions and competition between tubificid species in a benthic community. Freshwater Biol., 54: 1616–1628.

Steinbach-Elwell, L. C., Stromberg, K. E., Ryce, E. K.N. and Bartholomew, J. L. 2009b. Whirling disease in the United States: A summary of progress in research and management, Bozeman: Montana Water Center.

Stevens, R., Kerans, B. L., Lemmon, J. C. and Rasmussen, C. 2001. The effects of Myxobolus cerebralis myxospore dose on triactinomyxon production and biology of Tubifex tubifex from two geographic regions. J. Parasitol., 87: 315–321.

Sturmbauer, C., Opadiya, G. B., Niederstätter, H., Riedmann, A. and Dallinger, R. 1999. Mitochondrial DNA reveals cryptic oligochaete species differing in cadmium resistance. Mol. Biol. Evol., 16: 967–974.

Thompson, K. G. and Nehring, R. B. 2000. A simple technique used to filter and quantify the actinospore of Myxobolus cerebralis and determine its seasonal abundance in the Colorado River. J. Aqua. Anim. Health, 12: 316–323.

Thompson, K. G., Nehring, R. B., Bowden, D. C. and Wygant, T. 1999. Field exposure of seven species or subspecies of salmonids to Myxobolus cerebralis in the Colorado River, Middle Park, Colorado. J. Aqua. Anim. Health, 11: 312–329.

Thompson, K. G., Nehring, R. B., Bowden, D. C. and Wygant, T. 2002. Response of Rainbow Trout Oncorhynchus mykiss to exposure to Myxobolus cerebralis above and below a point source of infectivity in the upper Colorado River. Dis. Aquat. Organ., 49: 171–178.

Vincent, E. R. 1996. Whirling disease and wild trout: The Montana experience. Fisheries, 21(6): 31–32.

Wagner, E. J., Arndt, R., Brough, M. and Roberts, D. W. 2002. Comparison of susceptibility of five Cutthroat Trout strains to Myxobolus cerebralis infection. J. Aqua. Anim. Health, 14: 84–91.

Winkelman, D. L., Thompson, K. G. and Terrell, J. 2005. The role of sediment size distribution and other microhabitat factors in the abundance and relative dominance of various Tubifex tubifex lineages, Bozeman: Final Report to The Whirling Disease Initiative, Montana Water Center.

Published

2011-07-01

Issue

Section

Research article