Estimating mercury concentrations and loads from four western Lake Superior watersheds using continuous in-stream turbidity monitoring

Authors

  • E. M. Ruzycki Natural Resources Research Institute, University of Minnesota Duluth, 5013 Miller Trunk Highway Duluth, Minnesota 55811-1442, USA
  • R. P. Axler Natural Resources Research Institute, University of Minnesota Duluth, 5013 Miller Trunk Highway Duluth, Minnesota 55811-1442, USA
  • J. R. Henneck Natural Resources Research Institute, University of Minnesota Duluth, 5013 Miller Trunk Highway Duluth, Minnesota 55811-1442, USA
  • N. R. Will Natural Resources Research Institute, University of Minnesota Duluth, 5013 Miller Trunk Highway Duluth, Minnesota 55811-1442, USA
  • G. E. Host Natural Resources Research Institute, University of Minnesota Duluth, 5013 Miller Trunk Highway Duluth, Minnesota 55811-1442, USA

Keywords:

streams, total suspended sediment, surrogate, urban runoff

Abstract

Many streams along the Minnesota coast of Lake Superior have been listed as impaired from either high turbidity or high fish mercury concentrations or both. Both turbidity and total mercury have been shown to be strongly correlated to total suspended sediment in many disturbed watersheds. Turbidity and total mercury concentrations and loads were estimated in four western Lake Superior watersheds from 2005–2006 using automated in-stream turbidity measurements. Regression models were developed relating this near-continuous turbidity data to grab sample measures of mercury during differing flow regimes. Total mercury values ranged from 1 to 28 ng l−1 throughout the open water season and showed a close relationship to total suspended sediment (r2 = 0.85, n = 23; p < 0.001) and a less robust but still significant relationship with turbidity (r2 = 0.40, n = 34; p < 0.001) for all four streams. Mercury loads to Lake Superior were estimated to range from 8 to 97 g yr−1 with watershed yields ranging from 0.5 to 4.3 μg m−2 yr−1. Continuous turbidity monitoring appears to be a reasonable surrogate for both suspended sediment and total mercury concentration, providing information when manual sample collection is cost-prohibitive or logistically difficult, and across a wide range of flows.

References

Allan, C. J., Heyes, A., Roulet, N. T., St. Louis, V. L. and Rudd, J. W.M. 2001. Spatial and temporal dynamics of mercury in Precambrium Shield upland runoff. Biogeochemistry, 52: 13–40.

Ameel, J. J., Ruzycki, E. R., Owen, C. J. and Axler, R. P. 1998. Analytical chemistry and quality assurance procedures for natural water, wastewater, and sediment samples. (revised 2008). NRRI/TR-98/28

Anderson, J. M., Evenson, T. and Estabrooks, Wilson, B. 2003. An assessment of representative Lake Superior basin tributaries 2002, MN: Minnesota Pollution Control Agency. Stream Water Quality Assessment Technical Report

APHA. 1995. Standard methods for the examination of water and wastewater, 2120- B, 19th Ed, Washington, DC: American Public Health Association. 1995

Axler, R., Lonsdale, M., Reed, J., Hagley, C., Schomberg, J., Henneck, J., Host, G., Will, N., Ruzycki, E., Sjerven, G., Richards, C. and Munson, B. 2004. DuluthStreams.org: Community partnerships for understanding urban stormwater and water quality issues at the head of the Great Lakes, MN: Natural Resources Research Institute, University of Minnesota Duluth. NRRI Technical Report NRRI/TR-2004/34

Axler, R., Hagley, C., Host, G. and Schomberg, J. 2006. LakeSuperiorStreams.org: Making stormwater and stream data come alive for citizens, students, teachers, contractors, resource agencies, decision-makers and scientists San Jose, CA Proceedings of conference, 2006 May 7–11 U.S. Department of the Interior, U.S. Geological Survey 5th National Water Quality Monitoring Conference

Babiarz, C. L., Hurley, J. P., Benoit, J. M., Shafer, M. M., Andren, A. W. and Webb, D. A. 1998. Seasonal influences on partitioning and transport of total and methylmercury in rivers from contrasting watersheds. Biogeochemistry, 41: 237–257.

Balogh, S. J. 1997. Mercury and suspended sediment loadings in the Lower Minnesota River. Environ. Sci. Technol, 31: 198–202.

Balogh, S. J., Huang, Y., Hofferman, H. J., Meyer, M. L. and Johnson, D. K. 2003. Methylmercury in rivers draining cultivated watersheds. Sci. Total Environ., 304: 305–313.

Balogh, S. J., Nollet, Y. H. and Offerman, H. J. 2005. A comparison of total and methylmercury export from various Minnesota watersheds. Sci. Total Environ., 340: 261–270.

Brigham, M. E., Wentz, D. A., Aiken, G. R. and Krabbenhoft, D. P. 2009. Mercury cycling in stream ecosystems. 1. Water column chemistry and transport. Environ. Sci. Technol., 43: 2720–2725.

Bushey, J. T., Driscoll, C. T., Mitchell, M. J., Selvendiran, P. and Montesdeoca, M. R. 2008. Mercury transport in response to storm events from a northern landscape. Hydrol. Process., 22: 4813–4826.

Dittman, J. A., Shanley, J. B., Driscoll, C. T., Aiken, G. R., Chalmers, A. T., Towse, J. E. and Selvendiran, P. 2010. Mercury dynamics in relation to dissolved organic carbon concentration and quality during high flow events in three northeastern U.S. streams. Water Resour. Res., 46 W07522, doi:10.1029/2009WR008351

Engstrom, D. R. and Swain, E. B. 1997. Recent declines in atmospheric mercury deposition in the Upper Midwest. Environ. Sci. Tech., 31: 960–967.

Engstrom, D. R., Balough, S. J. and Swain, E. B. 2007. History of mercury inputs to Minnesota lakes: Influences of watershed disturbance and localized atmospheric deposition. Limnol. Oceanogr., 52(6): 2467–2483.

Fulkerson, M., Nadia, F. N. and Chasar, L. S. 2007. Characterizing dry deposition of mercury in urban runoff. Water Air Soil Pollut., 185: 21–32.

Grigal, D. F. 2002. Inputs and outputs of mercury from terrestrial watersheds: A review. Environ. Rev., 10: 1–39.

Harris, R. C., Rudd, J. W.M., Amyot, M., Babiarz, C. L., Beaty, K. G., Blanchfield, P. J., Bodaly, R. A., Branfireun, B. A., Gilmour, C. C., Graydon, J. A., Heyes, A., Hintelmann, H., Hurley, J. P., Kelly, C. A., Krabbenhoft, D. P., Lindberg, S. E., Mason, R. P., Paterson, M. J., Podemski, C. L., Robinson, A., Sandlilands, K. A., Southworth, G. R., St. Louis, V. L. and Tate, M. T. 2007. Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. Proc. Natl. Acad. Sci. U.S.A., 104(16): 16586–16591.

Helsel, D. R. and Hirsch, R. M. 1992. Statistical Methods in Water Resources, NY: Elsevier Science Publishing Company.

Hintelmann, H., Harris, R., Heyes, A., Hurley, J. P., Kelly, C. A., Krabbenhoft, D. P., Lindberg, S., Rudd, J. W.M., Scott, K. J. and St. Louis, V. L. 2002. Reactivity and mobility of new and old mercury deposited in a boreal forest ecosystem during the first year of the METAALICUS study. Environ. Sci. Tech., 36(23): 5034–5040.

Hurley, J. P., Benoit, J. M., Babiarz, C. L., Shafer, M. M., Andren, A. W., Sullivan, J. R., Hammond, R. and Webb, D. A. 1995. Influences of watershed characteristics on mercury levels in Wisconsin rivers. Environ. Sci. Technol., 29: 1867–1875.

Hurley, J. P., Cowell, S. E., Shafer, M. M. and Hughes, P. E. 1998. Tributary loading of mercury to Lake Michigan: Importance of seasonal events and phase partitioning. Sci. Total Environ., 213: 129–137.

Iverfeldt, A. and Johansson, K. 1988. Mercury in run-off water from small watersheds. Internat. Verein. Limnol. Verh., 23: 1626–1632.

Jeremiason, J. D., Kanne, L. A., Lacoe, T. A., Hulting, M. and Simick, M. F. 2009. A comparison of mercury cycling in Lakes Michigan and Superior. J. Great Lakes Res., 35: 329–336.

Kolka, R. K., Grigal, D. F., Verry, E. S. and Nater, E. A. 1999. Mercury and organic carbon relationships in streams draining forested upland/peatland watersheds. J. Environ. Qual., 28: 766–775.

Krabbenhoft, D. P. and Babiarz, C. L. 1992. Role of groundwater transport in aquatic mercury cycling. Water Resour. Res., 28: 3119–3128.

Krabbenhoft, D. P., Benoit, J. M., Babiarz, C. L., Hurley, J. P. and Andren, A. W. 1995. Mercury cycling in the Allequash Creek watershed, northern Wisconsin. Water Air Soil Pollut., 80: 425–433.

Lindgren, J., Schuldt, N., Borkholder, B., Howes, T., Levar, A., Olson, C., Tillman, J. and Vogt, D. 2006. A study of the St. Louis River. Minnesota F-29-R (P)-25, (http://files.dnr.state.mn.us/areas/fisheries/duluth/st_louis_river_study.pdf), accessed 26 Oct 2010

Mason, R. P. and Sullivan, K. A. 1998. Mercury and methylmercury transport through an urban watershed. Water Res., 32(2): 321–330.

Mast, M. A., Campbell, D. H., Krabbenoft, D. P. and Taylor, H. E. 2005. Mercury transport in a high elevation watershed in Rocky Mountain National Park, Colorado. Water Air Soil Pollut., 164: 21–42.

Miller, E. K., Vanarsdale, A., Keeler, G. J., Chalmers, A., Poissant, L., Kamman, N. C. and Brulotte, R. 2005. Estimation and mapping of wet and dry deposition across Northeastern North America. Ecotoxicology, 14: 53–70.

Minnesota Pollution Control Agency (MPCA). 2009. Implementation plan for Minnesota's statewide mercury total maximum daily load, MPCA publication. wq-iw4-01p

Munthe, J., Bodaly, R. A., Branfireun, B. A., Driscoll, C. T., Gilmour, C. C., Harris, R., Horvat, M., Lucotte, M. and Malm, O. 2007. Recovery of mercury-contaminated fisheries. Ambio, 36(1): 33–44.

Nater, E. A. and Grigal, D. F. 1992. Regional trends in mercury distribution across the Great Lakes states, north central U.S.A. Nature (London), 358: 139–141.

Rolfhus, K. R., Sakamoto, H. E., Cleckner, L. B., Stoor, R. W., Babiarz, C. L., Back, R. C., Manolopoulos, H. and Hurley, J. P. 2003. Distribution and fluxes of total and methylmercury in Lake Superior. Environ. Sci. Technol., 37: 865–872.

Ruzycki, E. M. 2010. Estimating sediment, nutrient, and mercury loads from four western Lake Superior watersheds using continuous in-stream turbidity monitoring, Duluth, MN: University of Minnesota. M.S. Thesis

Scherbatskoy, T., Shanley, J. B. and Keeler, G. J. 1998. Factors controlling mercury transport in an upland forested catchment. Water Air Soil Pollut., 105: 427–438.

Schuster, P. F., Shanley, J. B., Marvin-Dipasquale, Reddy, M. M., Aiken, G. R., Roth, D. A., Taylor, H. E., Krabbenhoft, D. P. and DeWild, J. F. 2008. Mercury and organic carbon dynamics during runoff episodes from a northeastern USA watershed. Water Air Soil Pollut., 187: 89–108.

Shanley, J. B., Alisa Mast, M., Campbell, D. H., Aiken, G. R., Krabbenhoft, D. P., Hunt, R. J., Walker, J. F., Schuster, P. F., Chalmers, A., Aulenbach, B. T., Peters, N. E., DiPasquale, M. M., Clow, D. W. and Shafer, M. M. 2008. Comparison of total mercury and methylmercury cycling at five sites using the small watershed approach. Environ. Pollut., 154: 143–154.

Sørensen, R., Meili, M., Lambertsson, L., von Brømssen, C. and Bishop, K. 2009. The effects of forest harvest operations on mercury and methylmercury in two boreal streams: Relatively small changes in the first two years prior to site preparation. Ambio, 38(7): 364–372.

St. Louis, V. L., Rudd, J. W.M., Kelly, C. A., Hall, B. D., Rolfus, K. R., Scott, K. J., Lindberg, S. E. and Dong, W. 2001. Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems. Environ. Sci. Tech., 35(15): 3089–3098.

Swain, E. B., Engstrom, D. R., Brigham, M. E., Henning, T. A. and Brezonik, P. L. 1992. Increasing rates of atmospheric mercury deposition in midcontinent North America. Science, 257: 784–787.

US EPA. 2001. Methylmercury in water by distillation, aqueous ethylation, purge and trap, and CVAFS. EPA-821-R-01-020

US EPA. 2002. Method 1631, Revision E: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry. EPA-821-R-02-019

USGS. 2006. Guidelines and standard procedures for continuous water-quality monitors: Station operation, record computation, and data reporting. Techniques and Methods, 1-D3

Wall, G. R., Ingleston, H. H. and Litten, S. 2005. Calculating mercury loading to the tidal Hudson River, New York, using rating curves and surrogate methodologies. Water, Air, and Soil Pollution, 165: 233–248.

Weiner, J. G., Knights, B. C., Sandheinrich, M. B., Jeremiason, J. D., Brigham, M. E., Engstrom, D. R., Woodruff, L. G., Cannon, W. F. and Balogh, S. J. 2006. Mercury in soils, lakes and fish in Voyageurs National Park (Minnesota): Importance of atmospheric deposition and ecosystem factors. Environ. Sci. Technol., 40(20): 6261–6268.

Whyte, D. C. and Kirchner, J. W. 2000. Assessing water quality impacts and cleanup effectiveness in streams dominated by episodic mercury discharges. Sci. Total. Environ., 260: 1–9.

Published

2011-10-01