Benthic foodweb of a salt marsh in an artificial lagoon, central Japan
Keywords:
artificial lagoon, benthic fauna, restoration, stable isotopeAbstract
Salt marsh rehabilitations have been carried out globally, with the goal of recovering structural characteristics such as diversity or abundance. Functional properties (e.g. foodwebs) are also important but less is known about the effects of rehabilitation on such factors. We investigated the benthic foodweb in a reconstructed salt marsh, which consisted of marsh vegetation and mudflats, in the artificial Shinhama Lagoon, at the head of Tokyo Bay, central Japan. We used stable carbon and nitrogen isotope analysis to assess the contributions of primary producers (marsh plants, phytoplankton, microphytobenthos and macroalgae) as nutrient sources for benthic invertebrates in vegetated and unvegetated habitats. Phytoplankton contributed to approximately 27% of the diet of benthic invertebrates and was thus the highest contributor in both habitats. In addition, marsh plants contributed about 24% of the diet of the invertebrates in vegetated habitats, and microphytobenthos contributed around 22% of the diet in unvegetated habitats. These findings are consistent with those obtained from other intact salt marshes, suggesting that the artificial Shinhama Lagoon has evolved into a natural system in terms of the benthic foodweb approximately 30 years after reconstruction. Results indicate that functional properties can be recovered by marsh restoration, and that future rehabilitation programmes should aim to recover whole ecosystems, i.e. both structural characteristics and functional properties.
References
Al-Zaidan, A. S.Y., Kennedy, H., Jones, D. A. and Al-Mohanna, S. Y. 2006. Role of microbial mats in Sulaibikhat Bay (Kuwait) mudflat foodwebs: evidence from δ13C analysis. Mar. Ecol. Prog. Ser., 308: 27–36.
Bertness, M. D. and Miller, T. 1984. The distribution and dynamics of Uca pugnax (Smith) burrows in a New England salt marsh. J. Exp. Mar. Biol. Ecol., 83: 211–237.
Bouillon, S., Koedam, N., Raman, A. V. and Dehairs, F. 2002. Primary producers sustaining macro-invertebrate communities in intertidal mangrove forests. Oecologia, 130: 441–448.
Costanza, R., dArge, R., deGroot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., ONeill, R. V., Paruelo, J., Raskin, R. G., Sutton, P. and vandenBelt, M. 1997. The value of the world's ecosystem services and natural capital. Nature, 387: 253–260.
Couch, C. A. 1989. Carbon and nitrogen stable isotopes of meiobenthos and their food resources. Estuar. Coast. Shelf Sci., 28: 433–441.
Deegan, L. A. and Garritt, R. H. 1997. Evidence for spatial variability in estuarine foodwebs. Mar. Ecol. Prog. Ser., 147: 31–47.
Doi, H., Matsumasa, M., Toya, T., Satoh, N., Mizota, C., Maki, Y. and Kikuchi, E. 2005. Spatial shifts in food sources for macrozoobenthos in an estuarine ecosystem: carbon and nitrogen stable isotope analyses. Estuar. Coast. Shelf Sci., 64: 316–322.
Furota, F. 1997. “Benthos”. In Biological report in Tokyo Bay, Edited by: Numata, S. and Furota, T. 45–114. Tokyo, Japan: Tsukiji Shokan. in Japanese
Hamilton, S. K., Sippel, S. J. and Bunn, S. E. 2005. Separation of algae from detritus for stable isotope or ecological stoichiometry studies using density fractionation in colloidal silica. Limnol. Oceanogr. Methods, 3: 149–157.
Heip, C., Basford, D., Craeymeersch, J. A., Dewarumez, J. M., Dorjes, J., Dewilde, P., Duineveld, G., Eleftheriou, A., Herman, P. M.J., Niermann, U., Kingston, P., Kunitzer, A., Rachor, E., Rumohr, H., Soetaert, K. and Soltwedel, T. 1992. Trends in biomass, density and diversity of North Sea macrofauna. ICES J. Mar. Sci., 49: 13–22.
Heip, C. H.R., Goosen, N. K., Herman, P. M.J., Kromkamp, J., Middelburg, J. J. and Soetaert, K. 1995. Production and consumption of biological particles in temperate tidal estuaries. Oceanogr. Mar. Biol. Annu. Rev., 33: 1–149.
Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setala, H., Symstad, A. J., Vandermeer, J. and Wardle, D. A. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr., 75: 3–35.
Jacob, U., Mintenbeck, K., Brey, T., Knust, R. and Beyer, K. 2005. Stable isotope foodweb studies: a case for standardized sample treatment. Mar. Ecol. Prog. Ser., 287: 251–253.
Kamatani, A. 1993. “Changes of shore-line environments”. In Tokyo Bay: its Environmental Changes, Edited by: Ogura, N. 20–27. Tokyo, Japan: Koseisha-Koseikaku. in Japanese
Kanaya, G. and Kikuchi, E. 2004. Relationships between sediment chemical buffering capacity and H2S accumulation: comparative study in two temperate estuarine brackish lagoons. Hydrobiologia, 528: 187–199.
Kanaya, G., Takagi, S., Nobata, E. and Kikuchi, E. 2007. Spatial dietary shift of macrozoobenthos in a brackish lagoon revealed by carbon and nitrogen stable isotope ratios. Mar. Ecol. Prog. Ser.s, 345: 117–127.
Kang, C. K., Kim, J. B., Lee, K. S., Kim, J. B., Lee, P. Y. and Hong, J. S. 2003. Trophic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea: dual stable C and N isotope analyses. Mar. Ecol. Prog. Ser., 259: 79–92.
Kon, K., Kurokura, H. and Hayashizaki, K. 2007. Role of microhabitats in foodwebs of benthic communities in a mangrove forest. Mar. Ecol. Prog. Ser., 340: 55–62.
Kon, K, Hoshino, Y, Kanou, K., Okazaki, D., Nakayama, S. and Kohn, H. 2012. Importance of allochthonous material in benthic macrofaunal community functioning in estuarine salt marshes. Estuar. Coast. Shelf Sci., 96: 236–244.
Kurata, K., Minami, H. and Kikuchi, E. 2001. Stable isotope analysis of food sources for salt marsh snails. Mar. Ecol. Prog. Ser., 223: 167–177.
Laegdsgaard, P. 2006. Ecology, disturbance and restoration of coastal salt marsh in Australia: a review. Wetlands Ecol. Manage., 14: 379–399.
Lalli, C. M. and Parsons, T. R. 1995. Biological oceanography: an introduction. Second edition, Oxford, UK: Butterworth-Heinemann.
Levin, L. A., Boesch, D. F., Covich, A., Dahm, C., Erseus, C., Ewel, K. C., Kneib, R. T., Moldenke, A., Palmer, M. A., Snelgrove, P., Strayer, D. and Weslawski, J. M. 2001. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems, 4: 430–451.
McCutchan, J. H., Lewis, W. M., Kendall, C. and McGrath, C. C. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, 102: 378–390.
Meziane, T., Sanabe, M. C. and Tsuchiya, M. 2002. Role of Fiddler Crabs of a subtropical intertidal flat on the fate of sedimentary fatty acids. J. Exp. Mar. Biol. Ecol., 270: 191–201.
Monbet, Y. 1992. Control of phytoplankton biomass in estuaries: a comparative analysis of microtidal and macrotidal estuaries. Estuaries, 15: 563–571.
Page, H. M. 1997. Importance of vascular plant and algal production to macro-invertebrate consumers in a southern California salt marsh. Estuar. Coast. Shelf Sci., 45: 823–834.
Pennings, S. C. and Bertness, M. D. 2000. “Salt marsh communities”. In Marine community ecology, Edited by: Bertness, M. D., Gaines, S. D. and Hay, M. F. 289–316. Massachusetts, USA: Sinauer Associates, Inc.
Pethick, J. 2002. Estuarine and tidal wetland restoration in the United Kingdom: policy versus practice. Restor. Ecol., 10: 431–437.
Phillips, D. L. 2001. Mixing models in analyses of diet using multiple stable isotopes: a critique. Oecologia, 127: 166–170.
Phillips, D. L. and Gregg, J. W. 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia, 136: 261–269.
Quan, W. M., Shi, L. Y. and Chen, Y. Q. 2010. Stable isotopes in aquatic foodweb of an artificial lagoon in the Hangzhou Bay, China. Chin. J. Oceanol. Limnol., 28: 489–497.
Riera, P., Stal, L. J., Nieuwenhuize, J., Richard, P., Blanchard, G. and Gentil, F. 1999. Determination of food sources for benthic invertebrates in a salt marsh (Aiguillon Bay, France) by carbon and nitrogen stable isotopes: importance of locally produced sources. Mar. Ecol. Prog. Ser., 187: 301–307.
Rozas, L. P. and Minello, T. J. 2001. Marsh terracing as a wetland restoration tool for creating fishery habitat. Wetlands, 21: 327–341.
Sarda, R., Foreman, K. and Valiela, I. 1995. Macroinfauna of a Southern New England salt marsh: seasonal dynamics and production. Mar. Biol., 121: 431–445.
Vitousek, P. M., Mooney, H. A., Lubchenco, J. and Melillo, J. M. 1997. Human domination of Earth's ecosystems. Science, 277: 494–499.
Vonk, J. A., Christianen, M. J.A. and Stapel, J. 2008. Redefining the trophic importance of seagrasses for fauna in tropical Indo-Pacific meadows. Estuar. Coast. Shelf Sci., 79: 653–660.
Wolters, M., Garbutt, A. and Bakker, J. P. 2005. Salt-marsh restoration: evaluating the success of de-embankments in north-west Europe. Biol. Conserv., 123: 249–268.
Working Group of Gyotoku Wetland Restoration. 2009. Chiba, Japan: Report of first meeting on Working Group of Gyotoku Wetland Restoration (in Japanese),. Prefectural Government of Chiba
Young, T. P., Petersen, D. A. and Clary, J. J. 2005. The ecology of restoration: historical links, emerging issues and unexplored realms. Ecol. Lett., 8: 662–673.
Zedler, J. B. and Callaway, J. C. 1999. Tracking wetland restoration: do mitigation sites follow desired trajectories?. Restor. Ecol., 7: 69–73.
Published
Issue
Section
License
Manuscripts must be original. They must not be published or be under consideration for publication elsewhere, in whole or in part. It is required that the lead author of accepted papers complete and sign the MSU Press AEHM Author Publishing Agreement and provide it to the publisher upon acceptance.