Microbial foodweb comparison of the Laurentian Great Lakes during the summers of 2001–2004
Keywords:
comparative ecology, autotrophy, heterotrophy, carbon budgets, lower trophic levelsAbstract
A structural and functional assessment of the microbial foodweb of Lakes Superior, Huron, Erie and Ontario was undertaken during late summer (August) between 2001 and 2004. One lake was sampled in each year. Our analysis included microscopic enumerations of bacteria, autotrophic picoplankton, phytoplankton, heterotrophic nanoflagellates and ciliates coupled with radioisotope tracer measurements of primary productivity (14C) and bacterial growth (3H). Phytoplankton biomass was highest on average in Lake Erie (≈1.9 g m−3) and lowest in Lake Ontario (≈0.2 g m−3), whereas microbial loop biomass was highest in Lake Ontario (≈2.4 g m−3) and lowest in Lake Huron (≈0.1 g m−3). The organic carbon pool was found to be predominantly autotrophic (>80%) in Lakes Superior (≈280 mg C m−3), Huron (≈195 mg C m−3) and Erie (≈660 mg C m−3) and smaller picoplankton had the highest carbon turnover rates (≈0.4–1.5 d−1). However, in Lake Ontario (≈335 mg C m−3) the carbon pool was about 75% heterotrophic and larger net plankton had the highest carbon turnover rates (≈6.8 d−1). Despite differences in trophic state, the microbial foodwebs of Lakes Superior, Huron and Erie appeared to function in a similar and efficient manner. In contrast, the microbial foodweb of Lake Ontario appeared to be unhealthy with autochthonous production being sequestered by heterotrophic nanoflagellates. More detailed work is needed to understand the foodweb linkages both within the Great Lakes and among them.
References
Austin, J. A. and Colman, S. M. 2007. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback. Geophys. Res. Lett., 34(6): LO6604
Barbiero, R. P., Balcer, M., Rockwell, D. C. and Tuchman, M. L. 2009. Recent shifts in the crustacean zooplankton community of Lake Huron. Can. J. Fish. Aquat. Sci., 66: 816–828.
Barbiero, R. P., Lesht, B. M. and Warren, G. J. 2012. Convergence of trophic state and the lower foodweb in Lakes Huron, Michigan and Superior. J. Great Lakes Res., 38: 368–380.
Beeton, A. M. 1984. The world's Great Lakes. J. Great Lakes Res., 10: 106–113.
Biddanda, B., Ogdahl, M. and Cotner, J. 2001. Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. Limnol. Oceanogr., 46(3): 730–739.
Bocaniov, S. A. and Smith, R. E.H. 2009. Plankton metabolic balance at the margins of very large lakes: temporal variability and evidence for dominance of autochthonous processes. Freshwat. Biol., 54: 345–362.
Brett, M. T., Kainz, M. J., Taipale, S. J. and Seshan, H. 2009. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. PNAS, 106(50): 21197–21201.
Bunnell, D. B., Davis, B. M., Warner, D. M., Chrishinske, M. A. and Roseman, E. P. 2011. Planktivory in the changing Lake Huron zooplankton community: Bythotrephes consumption exceeds that of Mysis and fish. Freshwat. Biol., 56: 1281–1296.
Cotner, J., Biddanda, B., Makino, W. and Stets, E. 2004. Organic carbon biogeochemistry of Lake Superior. Aquat. Ecosyst. Health Mgmt., 7(4): 451–464.
del Giorgio, P. A. and Peters, R. H. 1994. Patterns in planktonic P:R ratios in lakes: influence of lake trophy and dissolved organic carbon. Limnol. Oceanogr., 39: 772–787.
Dodds, W. K. and Cole, J. J. 2007. Expanding the concept of trophic state in aquatic ecosystems: it's not just the autotrophs. Aquat. Sci., 69: 427–439.
Dove, A. 2009. Long-term trends in major ions and nutrients in Lake Ontario. Aquat. Ecosyst. Health. Mgmt., 12(3): 281–295.
Environment Canada and United States Environmental Protection Agency. 1995. The Great Lakes: an environmental atlas and resource book, 3rd Edition http://www.epa.gov/glnpo/atlas/index.html. Last accessed: December 2, 2009
Evans, M. A., Fahnenstiel, G. and Scavia, D. 2011. Incidental oligotrophication of North American Great Lakes. Env. Sci. Technol., 45: 3297–3303.
Fahnenstiel, G. L., Krausse, A. E., McCormick, M. J., Carrick, H. J. and Schelske, C. L. 1998. The structure of the planktonic foodweb in the St. Lawrence Great Lakes. J. Great Lakes Res., 24: 531–554.
Fahnenstiel, G., Pothoven, S., Vanderploeg, H., Klarer, D., Nalepa, T. and Scavia, D. 2010. Recent changes in primary production and phytoplankton in the offshore region of southeastern Lake Michigan. J. Great Lakes Res., 36: 20–29.
Fitzpatrick, M. A.J., Munawar, M., Leach, J. H and Haffner, G. D. 2007. Factors regulating primary production and phytoplankton dynamics in western Lake Erie. Fundam. Appl. Limnol. (Archiv. Hydrobiol.), 169: 137–152.
Fitzpatrick, M. A.J., Munawar, M. and Haffner, G. D. 2008. “Application of the primary production required model for managing the commercial fisheries in western Lake Erie”. In Checking the pulse of Lake Erie, Edited by: Munawar, M. and Heath, R. T. 475–495. Burlington, ON, Canada: Ecovision World Monograph Series. Aquatic Ecosystem Health & Management Society.
Grigorovich, I., Colautti, R., Mills, E., Holeck, K., Ballert, A. and MacIsaac, H. 2003. Ballast-mediated animal introductions in the Laurentian Great Lakes: retrospective and prospective analyses. Can. J. Fish. Aquat. Sci., 60: 740–756.
Heath, R. T. and Munawar, M. 2004. Bacterial productivity in Lake Superior, 2001: implications for foodweb efficiencies in oligotrophic freshwater ecosystems. Aquat. Ecosyst. Health. Mgmt., 7(4): 465–474.
Heath, R. T., Hwang, S. J. and Munawar, M. 2003. A hypothesis for the assessment of the importance of microbial foodweb linkages in nearshore and offshore habitats of the Laurentian Great Lakes. Aquat. Ecosyst. Health. Mgmt., 6(3): 231–239.
Hiriart-Baer, V. P., Diep, N. and Smith, R. E.H. 2008. Dissolved organic matter in the Great Lakes: role and nature of allochthonous material. J. Great Lakes Res., 34: 383–394.
Holeck, K. T., Watkins, J. M., Mills, E. L., Johannsson, O., Millard, S. and Richardson, V. 2008. Spatial and temporal long term assessment of Lake Ontario water clarity, nutrients, chlorophyll a, and zooplankton. Aquat. Ecosyst. Health. Mgmt., 11(4): 377–391.
Hwang, S.-J. and Heath, R. T. 1997. Bacterial productivity and protistan bacterivory in coastal and offshore communities of Lake Erie. Can. J. Fish. Aquat. Sci., 54: 788–799.
Hwang, S.-J. and Heath, R. T. 1999. Zooplankton bacterivory at coastal and offshore sites of Lake Erie. J. Plankton Res., 21(4): 699–719.
Jones, M. L., Shuter, B. J., Zhao, Y. M. and Stockwell, J. D. 2006. Forecasting effects of climate change on Great Lakes fisheries: models that link habitat supply to population dynamics can help. Can. J. Fish. Aquat. Sci., 63: 457–468.
Jørgensen, N. O.G. 1992. Incorporation of [3H]leucine and [3H]valine into protein of freshwater bacteria: field applications. Appl. Environ. Microbiol., 58: 3647–3653.
Lee, S. and Fuhrman, J. A. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Env. Microbiol., 53: 1298–1303.
Lund, J. W.G., Kipling, C. and LeCren, E. D. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimation by counting. Hydrobiol., 9: 143–170.
Lynn, D. H. and Munawar, M. 1999. “Abundance, biomass, and diversity of planktonic ciliates (Ciliophora) in Lake Erie”. In State of Lake Erie (SOLE) – past, present and future, Edited by: Munawar, M., Edsall, T. and Munawar, I. F. 155–168. Leiden, , Netherlands: Backhuys Publishers.
McCormick, M. J. and Fahnenstiel, G. L. 1999. Recent climatic trends in nearshore water temperatures in the St. Lawrence Great Lakes. Limnol. Oceanogr., 44: 530–540.
McDonald, C. P., Urban, N. R. and Casey, C. M. 2010. Modeling historical trends in Lake Superior total nitrogen concentrations. J. Great Lakes Res., 36: 715–721.
Mills, E. L., Casselman, J. M., Dermott, R., Fitzsimons, J. D., Gal, G., Holeck, K. T., Hoyle, J. A., Johannsson, O. E., Lantry, B. F., Makarewicz, J. C., Millard, E. S., Munawar, I. F., Munawar, M., O’Gorman, R., Owens, R. W., Rudstam, L. G., Schaner, T. and Stewart, T. J. 2003. Lake Ontario: Foodweb dynamics in a changing ecosystem (1970–2000). Can. J. Fish. Aquat. Sci., 60: 471–490.
Montagnes, D. J.S. and Lynn, D. H. 1993. “A quantitative protargol stain (QPS) for ciliates and other protists”. In Handbook of methods in aquatic microbial ecology, Edited by: Kemp, P. F., Sherr, B. F., Sherr, E. B. and Cole, E. J. Boca Raton: Lewis Publishers.
Munawar, M. and Munawar, I. F. 1982. Phycological studies in Lakes Ontario, Erie, Huron and Superior. Can. J. Bot., 60: 1837–1858.
Munawar, M. and Munawar, I. F. 1996. Phytoplankton dynamics in the North American Great Lakes Vol. I: Lakes Ontario, Erie and St. Clair, Amsterdam: Ecovision World Monograph Series. SPB Academic Publishing.
Munawar, M. and Munawar, I. F. 2000. Phytoplankton dynamics of the North American Great Lakes. Vol. 2., Leiden, , Netherlands: Backhuys Publishers.
Munawar, M. and Munawar, I. F. 2001. “An overview of the changing flora and fauna of the North American Great Lakes. Part I: Phytoplankton and microbial loop”. In The Great Lakes of the World (GLOW): food-web, health & integrity, Edited by: Munawar, M. and Hecky, R. E. 219–276. Leiden, , Netherlands: Backhuys Publishers.
Munawar, M. and Nauwerck, A. 1971. The composition and horizontal distribution of phytoplankton in Lake Ontario during the year 1970. : 69–78. Proc. 14th Conf. Great Lakes Res. Internat. Assoc. Great Lakes Res
Munawar, M. and Weisse, T. 1989. Is the ‘microbial loop’ an early indicator of anthropogenic stress?. Hydrobiol., 188/189: 163–174.
Munawar, M., Munawar, I. F., Norwood, W. P. and Mayfield, C. I. 1987. Significance of autotrophic picoplankton in the Great Lakes and their use as early indicators of contaminant stress. Arch.Hydrobiol. Beih., 25: 141–155.
Munawar, M., Munawar, I. F., Weisse, T., van Stam, H., Fitzpatrick, M. and Lorimer, J. 1999. “Probing microbial food-web structure in Lake Erie”. In State of Lake Erie (SOLE) – Past, Present and Future, Edited by: Munawar, M., Edsall, T. and Munawar, I. F. 197–218. Leiden, , Netherlands: Ecovision World Monograph Series, Backhuys Publishers.
Munawar, M., Munawar, I. F., Mandrak, N., Fitzpatrick, M., Dermott, R. and Leach, J. 2005. An overview of the impact of non-indigenous species on the foodweb integrity of North American Great Lakes: Lake Erie example. Aquat. Ecosyst. Heath. Mgmt., 8: 375–395.
Munawar, M., Munawar, I. F., Fitzpatrick, M., Niblock, H., Bowen, K. and Lorimer, J. 2008. “An intensive assessment of planktonic communities in the Canadian waters of Lake Erie, 1998”. In Checking the pulse of Lake Erie, Edited by: Munawar, M. and Heath, R. 297–346. Burlington, ON, Canada: Ecovision World Monograph Series. Aquatic Ecosystem Health and Management Society.
Munawar, M., Munawar, I. F., Fitzpatrick, M., Niblock, H. and Lorimer, J. 2009. “The base of the foodweb at the top of the Great Lakes: structure and function of the microbial foodweb of Lake Superior”. In State of Lake Superior, Edited by: Munawar, M. and Munawar, I. F. 289–318Burlington, ON: Ecovision World Monograph Series, Aquatic Ecosystem Health & Management Society.
Munawar, M., Fitzpatrick, M., Munawar, I. F. and Niblock, H. 2010. Checking the pulse of Lake Ontario's microbial-planktonic communities: a trophic transfer hypothesis. Aquat. Ecosyst. Heath. Mgmt., 13(4): 395–412.
National Laboratory for Environmental Testing (NLET). Manual of Analytical Methods, Major Ions and Nutrients, Volume 1. Environment Canada, Burlington, Ontario
Neimi, G. J., Reavie, E. D., Peterson, G. S., Kelley, J. R., Johnston, C. A., Johnson, L. B., Howe, R. W., Host, G. E., Hollenhorst, T. P., Danz, N. P., Ciborowski, J. J.H., Brown, T. N., Brady, V. J. and Axler, R. P. 2011. An integrated approach to assessing multiple stressors for coastal Lake Superior. Aquat. Ecosyst. Health Mgmt., 14(4): 356–375.
O’Gorman, R., Prindle, S. E., Lantry, J. R. and Lantry, B. F. 2008. Distribution of the Lower Foodweb in Lake Ontario: Did it affect Alewife Growth or Condition?. Aquat. Ecosyst. Health Mgmt., 11(4): 392–402.
Pace, M. L. 1993. “Heterotrophic microbial processes”. In The trophic cascade in lakes, Edited by: Carpenter, S. R. and Kitchell, J. F. 252–277. Cambridge, UK: Cambridge University Press.
Pick, F. R. and Caron, D. A. 1987. Picoplankton and nanoplankton biomass in Lake Ontario: relative contribution of phototrophic and heterotrophic communities. Can. J. Fish. Aquat. Sci., 44: 2164–2172.
Pomeroy, L. R. 1974. The ocean's foodweb a changing paradigm. BioScience, 24: 499–504.
Porter, K. G. and Feig, Y. S. 1980. The use of DAPI for identification and enumeration of bacteria and blue-green algae. Limnol. Oceanogr., 25: 943–948.
Prairie, Y. T., Bird, D. F. and Cole, J. J. 2002. The summer metabolic balance in the epilimnion of southeastern Quebec lakes. Limnol. Oceanogr., 47: 316–321.
Schlectriem, C., Arts, M. T. and Johannsson, O. E. 2008. Effects of long term fasting on the use of fatty acids as trophic markers in the opossum shrimp Mysis relicta—a laboratory study. J. Great Lakes Res., 34: 143–152.
Schroeder, R. 1969. Ein summierender Wasserschöpfer. (An integrating water sampler. In German.) Arch. Hydrobiol., 66: 241–243.
Sherr, E. B., Sherr, B. F. and Paffenhoefer, G.-A. 1986. Phagotrophic protozoa as food for metazoans: a ‘missing’ trophic link in marine pelagic foodwebs? Mar. Microb. Foodwebs, 1: 61–80.
Sherr, E. B., Sherr, B. F. and Hopkinson, C. S. 1988. Trophic interactions within pelagic microbial communities: indications of feedback regulation of carbon flow. Hydrobiologia, 159: 19–26.
Sprules, W. G., Johannsson, O. E., Millard, E. S., Munawar, M., Stewart, D. S., Tyler, J., Dermott, R., Whipple, S. J., Legner, M., Morris, T. J., Ghan, D. and Jech, J. M. Trophic transfer in Lake Erie: A whole foodweb modeling perspective. A White Paper Submitted for the Great Lakes Modeling Summit. 42nd Conference of the International Association of Great Lakes Research. 1999 May 24–28, Cleveland, OH
Sterner, R. W., Anagnostou, E., Brovold, S., Bullerjahn, G. S., Finlay, J., Kumar, S., McKay, R. M.L. and Sherrell, R. M. 2007. Increasing stoichiometric imbalance in North America's Largest Lake: nitrification in Lake Superior. Geophys Res Lett, 34: L10406
Strathman, R. R. 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr., 12: 411–418.
Tadonléké, R. D., Pinel-Alloul, B., Bourbonnais, N. and Pick, F. R. 2004. Factors affectong the bacteria – heterotrophic nanoflagellate relationship in oligo-mesotrophic lakes. J. Plankton Res., 26: 681–695.
Turley, C. M., Newell, R. C. and Robins, D. B. 1986. Survival strategies of two small marine ciliates and their role in regulating bacterial community structure under experimental conditions. Mar. Ecol. Prog. Ser., 33: 59–70.
Urban, N. R., Auer, M. T., Green, S. A., Lu, X., Apul, D. S., Powell, K. D. and Bub, L. 2005. Carbon cycling in Lake Superior. J. Geophys. Res. C Oceans, 110(6): 1–17.
Utermöhl, H. 1958. Zur vervolkommnung der quantitativen phytoplankton-methodik. (The improvement of quantitative phytoplankton methodology. In German.). Mitt. Internat. Verein. Limnol., 9: 1–38.
Verity, P. G., Robertson, C. Y., Tronzo, C. R., Andrews, M. G., Nelson, J. R. and Sieracki, M. E. 1992. Relationship between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol. Oceanogr., 37: 1434–1446.
Vollenweider, R. A., Munawar, M. and Stadelmann, P. 1974. A comparative review of phytoplankton and primary production in the Laurentian Great Lakes. J. Fish. Res. Board Can., 31: 739–762.
Watson, N. H.F. and Carpenter, G. F. 1974. Seasonal abundance of crustacean zooplankton and net plankton biomass of Lakes Huron, Erie and Ontario. J. Fish. Res. Board Can., 31: 309–317.
Published
Issue
Section
License
Manuscripts must be original. They must not be published or be under consideration for publication elsewhere, in whole or in part. It is required that the lead author of accepted papers complete and sign the MSU Press AEHM Author Publishing Agreement and provide it to the publisher upon acceptance.