Spatial extent and dissipation of the deep chlorophyll layer in Lake Ontario during the Lake Ontario lower foodweb assessment, 2003 and 2008

Authors

  • J. M. Watkins Cornell Biological Field Station, Department of Natural Resources, Cornell University, 900 Shackelton Pt. Road, Bridgeport, New York 13030, USA
  • B. C. Weidel U.S. Geological Survey, Great Lakes Science Center, Lake Ontario Biological Station, 17 Lake Street, Oswego, New York 13126, USA
  • L. G. Rudstam Cornell Biological Field Station, Department of Natural Resources, Cornell University, 900 Shackelton Pt. Road, Bridgeport, New York 13030, USA
  • K. T. Holeck Cornell Biological Field Station, Department of Natural Resources, Cornell University, 900 Shackelton Pt. Road, Bridgeport, New York 13030, USA

Keywords:

phytoplankton, fluorometer, chlorophyll a

Abstract

Increasing water clarity in Lake Ontario has led to a vertical redistribution of phytoplankton and an increased importance of the deep chlorophyll layer in overall primary productivity. We used in situ fluorometer profiles collected in lakewide surveys of Lake Ontario in 2008 to assess the spatial extent and intensity of the deep chlorophyll layer. In situ fluorometer data were corrected with extracted chlorophyll data using paired samples from Lake Ontario collected in August 2008. The deep chlorophyll layer was present offshore during the stratified conditions of late July 2008 with maximum values from 4–13 μg l−1 corrected chlorophyll a at 10 to 17 m depth within the metalimnion. Deep chlorophyll layer was closely associated with the base of the thermocline and a subsurface maximum of dissolved oxygen, indicating the feature's importance as a growth and productivity maximum. Crucial to the deep chlorophyll layer formation, the photic zone extended deeper than the surface mixed layer in mid-summer. The layer extended through most of the offshore in July 2008, but was not present in the easternmost transect that had a deeper surface mixed layer. By early September 2008, the lakewide deep chlorophyll layer had dissipated. A similar formation and dissipation was observed in the lakewide survey of Lake Ontario in 2003.

References

Abbott, M. R., Denman, K. L., Powell, T. M., Richerson, P. J., Richards, R. C., and Goldman, C., 1984. Mixing and the dynamics of the deep chlorophyll maximum in Lake Tahoe. Limnol. Oceanogr. 29, 862–878.

Baca, R. G., and Arnett, R. C., 1976. A Limnological Model for Eutrophic Lakes and Impoundments. Batelle, Pacific Northwest Laboratories, Richland, WA.

Barbiero, R. P., and Tuchman, M. L., 2001. Results from the U.S. EPA's biological open water surveillance program of the Laurentian Great Lakes: II. Deep chlorophyll maximum. J. Great Lakes Res. 27, 155–166.

Barbiero, R. P., Tuchman, M. L., 2004. The deep chlorophyll maximum in Lake Superior. J. Great Lakes Res. 30 (Suppl. 1), 256–268.

Binding, C. E., Jerome, J. H., Bukata, R. P., and Booty, W. G., 2007. Trends in water clarity of the lower Great Lakes from remotely sensed aquatic color. J. Great Lakes Res. 33, 828–841.

Brooks, A. S., and Torke, B. G., 1977. Vertical and seasonal distribution of chlorophyll a in Lake Michigan. J. Fish. Res. Board Can. 34, 2280–2287.

Cullen, J. J., 1982. The deep chlorophyll maximum: Comparing vertical profiles of chlorophyll a. Can. J. Fish. Aquat. Sci. 39, 791–803.

Fahnenstiel, G. L., and Scavia, D., 1987a. Dynamics of Lake Michigan phytoplankton: the deep chlorophyll layer. J. Great Lakes Res. 13, 285–295.

Fahnenstiel, G. L., and Scavia, D. 1987b. Dynamics of Lake Michigan phytoplankton: recent changes in surface and deep communities. Can. J. Fish. Aquatic Sci. 44, 509–514.

Flynn, K. J., Stoecker, D. K., Mitra, A., Raven, J. A., Glibert, P. M., Hansen, P. J., Graneli, E., and Burkholder, J. M., 2013. Misuse of the phytoplankton-zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. J. Plankton Res. 35, 3–11.

Gouvêa, S. P., Melendez, C., Carberry, M. J., Bullerjahn, G. S., Wilhelm, S. W., Langen, T. A., and Twiss, M. R. 2006. Assessment of phosphorus-microbe interactions in Lake Ontario by multiple techniques. J. Great Lakes Res. 32, 455–470.

Holeck, K. T., Rudstam, L. G., Watkins, J. M., Lantry, J. R., Lantry B. F., Trometer, B., Koops, M., Johnson, T. B., 2015. Lake Ontario water quality during the 2003 and 2008 intensive field years and comparison with long-term trends. Aquat. Ecoyst. Health Mgmt 18(1), 7–17.

Holeck, K. T., Watkins, J. M., Mills, E. L., Johannsson, O., Millard, S., and Richardson, V., Bowen, K., 2008. Spatial and long-term temporal assessment of Lake Ontario water clarity, nutrients, chlorophyll a, and zooplankton. Aquatic Ecosystem Health and Management 11(4), 377–391.

Lamont, G., Laval, B., Pawlowicz, R., Pieters, R., and Lawrence, G. A., 2004. Physical mechanisms leading to upwelling of anoxic bottom water in Nitinat Lake. 8 p. In: 17th ASCE Engineering Mechanisms Conference, 2004 June 13–16. University of Delaware, Newark, Delaware, EEUU.

Moll, R. A. and Stoermer, E. F. 1982. A hypothesis relating trophic status and subsurface chlorophyll maxima of lakes. Archive fur Hydrobiologie 94, 425–440.

Moll, R. A., Brahce, M. Z., and Peterson, T. P. 1984. Phytoplankton dynamics within the subsurface chlorophyll maximum of Lake Michigan. J. Plankton Res. 6, 751–766.

Pilati, A. and Wurtsbaugh, W. A. 2003. Importance of zooplankton for the persistence of a deep chlorophyll layer: a limnocorral experiment. Limnol. Oceanogr. 48, 249–260.

Pothoven, S. A., and Fahnenstiel, G. L. 2013. Recent changes in summer chlorophyll a dynamics of southeastern Lake Michigan. J. Great Lakes Res. 39, 287–294.

Reynolds, C. S. 2006. Ecology of phytoplankton. Cambridge University Press, Cambridge, UK.

Rudstam, L. G., Holeck, K. T., Bowen, K. L., Watkins, J. M., Weidel, B. C., Luckey, F. J., 2015. Lake Ontario zooplankton in 2003 and 2008: Community changes and vertical redistribution. Aquatic Ecosystem Health and Management 18(1), 43–62.

Schlitzer, R., 2011. Ocean Data View. http://odv.awi.de

Sterner, R. W, 2010. In situ-measured primary production in Lake Superior. J. Great Lakes Res. 36, 139–149.

Twiss, M. R., Ulrich, C., Zastepa, A., and Pick, F. R. 2012. On phytoplankton growth and loss rates to microzooplankton in the epilimnion and metalimnion of Lake Ontario in mid-summer. J. Great Lakes Res. 38, 146–153.

Watkins, J. M., Rudstam, L. G., Crabtree, D. L, and Walsh, M. G., 2013. Is reduced benthic flux related to the Diporeia decline? Analysis of spring blooms and whiting events in Lake Ontario. J. Great Lakes. Res. 39, 395–403.

Welschmeyer, N. A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 39, 1985–1992.

White, B., and Matsumoto, K., 2012. Causal mechanisms of the deep chlorophyll maximum in Lake Superior: A numerical modeling investigation. J. Great Lakes Res. 38, 504–513.

Published

2015-01-02