Sediment phosphorus forms and levels in two tropical floodplain wetlands

Authors

  • Srikanta Samanta Central Inland Fisheries Research Institute (ICAR), Barrackpore, Kolkata 700 120, India
  • Debashri Debnath Central Inland Fisheries Research Institute (ICAR), Barrackpore, Kolkata 700 120, India
  • Nilanjan Maitra Central Inland Fisheries Research Institute (ICAR), Barrackpore, Kolkata 700 120, India
  • Moumita Banerjee Central Inland Fisheries Research Institute (ICAR), Barrackpore, Kolkata 700 120, India
  • Atalanta Narayan Chowdhury Central Inland Fisheries Research Institute (ICAR), Barrackpore, Kolkata 700 120, India
  • Anil Prakash Sharma Central Inland Fisheries Research Institute (ICAR), Barrackpore, Kolkata 700 120, India
  • Sanjib Kumar Manna Central Inland Fisheries Research Institute (ICAR), Barrackpore, Kolkata 700 120, India

Keywords:

sediment phosphorus fractionation, India

Abstract

Inorganic phosphorus is one of the critical nutrients determining trophic state and freshwater productivity. Sediment may act as a sink or source of phosphorus to the overlying water depending on its pH, redox state, various forms of phosphorus present, etc. To examine potential sorption or mobilization of sediment phosphorus in floodplain wetlands, the amount and distribution of phosphorus fractions were evaluated using a sequential chemical extraction procedure. Exceedingly high levels of total phosphorus (mean: 6040 ± 344, 5470 ± 363 mg kg−1), consisting largely of organic and refractory fraction (70 – 98%), followed by calcium-phosphorus (mean: 584 ± 31.3, 143 ± 8.42 mg kg−1) and iron-phosphorus (mean: 108 ± 10.1, 91.0 ± 7.68 mg kg−1) were recorded respectively in Bhomra and Akaipur wetlands of West Bengal, India. The inorganic phosphorus, comprising the loosely sorbed phosphorus and all the mineral bound forms contributed only about 6–14% to the total phosphorus indicating their less significance in phosphorus sorption or desorption in these tropical wetlands. Although the loosely sorbed phosphorus was in moderate level (2.69 ± 0.69, 1.54 ± 0.53 mg kg−1), water dissolved phosphorus was recorded at higher concentrations (mean: 0.16 ± 0.02 mg l−1 in Akaipur and 1.08 ± 0.12 mg l−1 in Bhomra). However, the higher level of water available phosphorus was not reflected in plankton production since the dominance of weeds suppresses their growth. This study recorded large accumulation of organic matter and nutrients in the form of detritus in these wetlands which may be channelized for fish production through stocking of suitable detritivorous fishes and/or reducing macrophyte coverage that would give space and nutrients for phytoplankton growth.

References

Ann, Y., Reddy, K. R., Delfino, J. J., 2000. Influence of redox potential on phosphorus availability in chemically amended wetland organic soils. Ecol. Eng. 14, 169–180.

Bagyaraj, D. J., Krishnaraj, P. U., Khanuja, S.P.S., 2000. Mineral phosphate solubilization: agronomic implications, mechanism and molecular genetics. Proc. Indian Natl. Sci. Acad. B 66 (2&3), 69–82.

Banerjea, S. M., Ghosh, S. M., 1970. Studies on the correlation between soil and different forms of bound phosphorus in pond soils. J. Inland Fish. Soc. India 2, 113–120.

Boström, B., Jansson, M., Forsberg, C., 1982. Phosphorus release from lake sediments. Arch. Hydrobiol.–Beih. Ergebn. Limnol. 18, 5–59.

Boström, B., Andersen, J. M., Fleischer, S., Jansson, M., 1988. Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170, 229–244.

Carlson, R. E., Simpson, J., 1996. A Coordinator's Guide to Volunteer Lake Monitoring Methods. North American Lake Management Society, WI.

Chang, S. C., Jackson, M. L., 1957. Fractionation of soil phosphorus. Soil Sci. 84, 133–144.

Das, A. K., 1998.Role of detritus in beels of West Bengal. J. Inland Fish. Soc. India. 30, 49–53.

Das, A. K., 2003. Biological production processes in floodplain wetlands in the context of enhancing fisheries. In: G. K. Vinci, B. C. Jha, U. Bhaumik, K. Mitra, K. (Eds.), Fisheries management of floodplain wetlands of India, pp. 67–75. Central Inland Fisheries Research Institute (Indian Council of Agricultural Research), Kolkata.

Fankem, H., Nwaga, D., Deubel, A., Dieng, L., Merbach, W., Etoa, F. X., 2006. Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree (Elaeis guineensis) rhizosphere in Cameroon. African J. Biotechnol. 5, 2450–2460.

Feijoóa, C. S., Lombardob, R. J. 2007. Baseline water quality and macrophyte assemblages in Pampean streams: A regional approach. Water Res. 41(7), 1399–1410.

Fytianos, K., Kotzakioti, A., 2005. Sequential fractionation of phosphorus in lake sediments of Northern Greece. Environ. Monit. Assess. 100, 191–200.

Gonsiorczyk, T., Casper, P., Koschel, R., 1998. Phosphorus binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake of the Baltic district (Germany). Water Sci. Technol. 37(3), 51–59.

Gunnars, A., Blomqvist, S., Johansson, P., Andersson, C., 2002. Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater, with incorporation of phosphate and calcium. Geochim. Cosmochim. Acta. 66, 745–758.

Hassan, M.A., 2003. Detrial dynamics and estimation of production potential of floodplain wetlands. In: G. K. Vinci, B. C. Jha, U. Bhaumik, K. Mitra, K. (Eds.), Fisheries management of floodplain wetlands of India, pp. 76–82. Central Inland Fisheries Research Institute (Indian Council of Agricultural Research), Kolkata.

Jackson, M. L., 1973. Soil Chemical Analysis. Prentice-Hall of India Pvt. Ltd., New Delhi, India.

Jana, B. B., 2007. Distribution pattern and role of phosphate solubilizing bacteria in the enhancement of fertilizer value of rock phosphate in aquatic ponds: state-of-the-art. First International Meeting on Microbial Phosphate Solubilization. Dev. Plant Soil Sci. 102, 229–238.

Khalil, M. Kh., Radwan, A. M., El-Moselhy, Kh. M., 2007. Distribution of phosphorus fractions and some heavy metals in surface sediments of Burullus Lagoon and adjacent Mediterranean Sea. Egypt. J. Aquat. Res. 33(1), 277–289.

Kozerski, H., Kleeberg, A., 1998. The sediments and the benthic pelagic exchange in the shallow lake Muggelsee. Int. Rev. Hydrobiol. 83(8), 77–112.

Maitra, N., Bandopadhyay, C., Samanta, S., Sarkar, K., Sharma, A. P., Manna, S. K., 2015. Isolation, identification and efficacy of inorganic phosphate solubilizing bacteria from oxbow lakes of West Bengal, India. Geomicrobiol. J. 23, 751–758.

Manna, S. K., Samanta, S., Bandopadhyay, C., Sarkar, K., Sharma, A. P., Maitra, N., 2014. Influence of temperature, pH, and oxic state on Ca-P dynamics in floodplain wetland sediment: a microcosm study. J. Inland Fish. Soc. India 46(1), 48–53.

Mitra, K., 2003. Macrophyte management in floodplain wetlands. In: G. K. Vinci, B. C. Jha, U. Bhaumik, K. Mitra, K. (Eds.), Fisheries management of floodplain wetlands of India, pp. 43–54. Central Inland Fisheries Research Institute, Kolkata, India.

Murphy, J., Riley, J., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27, 31–36.

Padma, P., Nair, S. M., 2010. Assessing the P fractionation in a tropical river-estuarine system of South India. Chem. Ecol. 26(6), 453–466.

Pathak, H., Mohanty, S., Jain, N., Bhatia, A., 2010. Nitrogen, phosphorus and potassium budgets in Indian agriculture. Nutr. Cycl. Agroecosyst. 86, 287–299.

Psenner, R., Puesko, R., Sager, M., 1984. Die Fractionierung Organischer und Anorganischer Phosphorverbindungen von Sedimenten Versuch einer Definition Okologisch Wichtiger Fractionen. Arch. Hydrobiol. 10, 115–155.

Qian, Y., Shi, J., Chen, Y., Lou, L., Cui, X., Cao, R., Li, P., Tang, J., 2010. Characterization of phosphate solubilizing bacteria in sediments from a shallow eutrophic lake and a wetland: isolation, molecular identification and phosphorus release ability determination. Molecules 15, 8518–8533.

Reddy, K. R., DeBusk W. F., 1991. Decomposition of water hyacinth detritus in eutrophic lake water. Hydrobiologia 211, 101–109.

Renjith, K. R., Chandramohanakumar, N., Joseph, M. M., 2011. Fractionation and bioavailability of phosphorus in a tropical estuary, Southwest India. Environ. Monit. Assess. 174, 299–312.

Rolon, A. S., Maltchik, L. 2006. Environmental factors as predictors of aquatic macrophyte richness and composition in wetlands of southern Brazil. Hydrobiologia 556, 221–231.

Rzepecki, A., 2010. The dynamics of phosphorus in lacustrine sediments: contents and fractions in relation to lake trophic state and chemical composition of bottom sediments. Pol. J. Ecol. 58, 409–427.

Sinha, M., 2003. Fisheries management norms for floodplain wetlands in India. In: G. K. Vinci, B. C. Jha, U. Bhaumik, K. Mitra, K. (Eds.), Fisheries management of floodplain wetlands of India, pp. 6–13. Central Inland Fisheries Research Institute (Indian Council of Agricultural Research), Kolkata, India.

Søndergaard, M., Jensen, J. P., Jeppesen, E., 1999. Internal phosphorus loading in shallow Danish lakes. Hydrobiologia 408/409, 145–152.

Sugunan, V. V., Vinci, G. K., Bhattacharya, B. K., Hassan, M. A., 2000. Ecology and fisheries of beels in West Bengal. Bull. No. 103. Central Inland Fisheries Research Institute, Kolkata, India.

Vinci, G. K., 2003. Fish yield optimization in beels-some case studies from West Bengal. In: G. K. Vinci, B. C. Jha, U. Bhaumik, K. Mitra, K. (Eds.), Fisheries management of floodplain wetlands of India, pp. 43–54. Central Inland Fisheries Research Institute, Kolkata, India.

Walkley, A., Black, I. A., 1934. An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 63, 251–263.

Published

2015-10-02