The topography effect on the sudden deceleration of the mesoscale eddy propagation speed around the Dongsha Islands in northern South China Sea

Authors

  • Yang Yang South China Sea Marine Engineering and Environment Institute of State Oceanic Administration, Guangzhou 510300, China
  • Tao Xing MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Guangzhou 510300, China
  • Yinxia Wang South China Sea Marine Engineering and Environment Institute of State Oceanic Administration, Guangzhou 510300, China
  • Junpeng Sui National Marine Environmental Forecasting Center, Beijing 100081, China
  • Junhui Lei Lyuliang Meteorological Administration, Shanxi 033000, China
  • Weidong Zhou State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
  • Qiang Wang State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
  • Lijun Qu Network Management Center, Qingdao Agricultural University, Qingdao, Shandong 266109, China
  • Dandan Sui State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China

Keywords:

slowdown of the propagation speed, topography gradient

Abstract

Based on satellite altimeter data, it was found that the mesoscale eddy propagates along the continental slope in northern South China Sea. When the mesoscale eddy passed the Dongsha Islands, the propagation speed clearly slowed down. Additionally, the radius increased and strength decreased when the mesoscale eddy touched the Dongsha Islands. Using the analytic expression for the speed of the center of an isolated eddy, it was found that the sudden slowdown of the zonal propagation speed was accompanied by the sudden decrease of the meridional topography gradient, which was the main reason for the slowdown of the propagation speed.

References

Bonjean, F., Lagerloef, G.S.E., 2002. Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. J. Phys. Oceanogr. 32, 2938–2954.

Chen, G.X., Hou, Y.J., Chu, X.Q., 2011. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J. Geophys. Res. 116, C06018, doi:10.1029/2010JC006716.

Chow, C.H., Hu, J.H., Centurioni, R.L., Niiler, P.P., 2008. 365 Mesoscale Dongsha Cyclonic Eddy in the northern South China Sea by drifter and satellite observations. J. Geophys.Res. 113, C04018, doi:10.1029/2007JC004542.

Chu, P.C., Fan, C.W., Lozano, C.J., Kerling, J.L., 1998. An air-borne expendable bathythermograph survey of the South China Sea, May 1995. J. Geophys. Res. 103, 21637–21652.

Dong, C., Lin, X., Liu, Y., Nencioli, F., Chao, Y., Guan, Y., Dickey, T., McWilliams, J., 2012. Three-Dimensional Eddy Analysis in the Southern California Bight. J. Geophys. Res. 117, C00H14, doi:10.1029/2011JC007354 375.

Dong, D.P., Zhou, W.D., Yang, Y., Du, Y., 2010. On outflow passages in the South China Sea. Adv. Atmos. Sci. 27(1),60–68.

Fang, W., Fang, G., Shi, P., Huang, Q., Xie, Q., 2002. Seasonal structures of upper layer circulation in the southern South China Sea from in situ observations. J. Geophys. Res. 107(C11), 3202, doi:10.1029/2002JC001343.

Flierl, G.R., 1979. The application of linear quasi-geostrophic dynamics to Gulf Stream ring. Deep Sea Trs. 23, 143–155.

Gan, Z.J., Cai, S.Q., 2001. Geographical and seasonal variability of rossby radii in south china sea. Journal of Tropical Oceanogrphy 20(1), 1–9 (In Chinese with English abstract).

Gan, J.P., Li, H., Curchitser, E.N., Haidvogel, D.B., 2006. Modeling South China Sea circulation :Response to seasonal forcing regimes. J Geophys Res 111, C06034, 10.1029/2005JC003298.

Hetland, R. H., Hsueh, Y., Leben, R.R., Niiler, P.P., 1999. A loop current-induced jet along the edge of the West Florida shelf. Geophys. Res. Lett. 26(15), 2239–2242.

Hu, J., Gan, J., Sun, Z., Zhu, J., and Dai, M., 2011. Observed three dimensional structure of a cold eddy in the southwestern South China Sea. J. Geophys. Res. 116, C05016, doi:10.1029/2010JC006810.

Hurlburt, H. E., Thompson, J.D., 1980. A numerical study of loop current intrusions and eddy shedding. J. Phys. Oceanogr. 10, 1611–1651.

Jacob, J.P., Chassignet, E.P., Dewar, W.K., 2002. Influence of topography on the propagation of isolated eddies. J. Phys. Oceanogr 32, 2848–2869.

Jia, Y., Liu, Q., 2004. Eddy shedding from the Kuroshio bend at Luzon Strait. J. Oceanogr. 60(6), 1063–1069.

Li, L., Nowlin, W.D., Su, J.L., 1998. Anticyclonic rings from the Kuroshio in the South China Sea. Deep-Sea Res. Part I 45, 1469–1482.

Li, Y., Li, L., Lin, M., Cai, W., 2002. Observation of mesoscale eddy fields in the sea southwest of Taiwan by TOPEX/Poseidon altimeter data. Acta Oceanol. Sinica 24, 163–170 (in Chinese with English abstract).

Liu, Y., Dong, C.M., Guan, Y.P., Chen, D.K., McWilliams, J., Nencioli, F., 2012. Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep Sea Res. I 68, 54–67.

Marks, K. M., Smith, W.H.F., 2006. An evaluation of publicity available global bathymetry grids. Mar. Geophys. Res. 27, 19–34.

McWilliams, J.C., Flierl, G.R., 1979. On the evolution of isolated nonlinear vortices. J. Phys. Oceanogr. 9, 1155–1182.

Nencioli, F., Dong, C., Dickey, T., Washburn, L., McWilliams, J., 2010. A vector geometry based eddy detection algorithm and its application to high-resolution numerical model products and High-Frequency radar surface velocities in the Southern California Bight. J. Atmos. Ocean. Technol. 27, 564–579. doi:10.11.1175/2009JTECHO725.1.

Qu, T., 2000. Upper-layer circulation in the South China Sea. J. Phys. Oceanogr. 30, 1450–1460.

Sangra, P., Pelegr, J.L., Hernandez-Guerra, A., Arregui, I., Martin, J.M., Marrero-Dıaz, A., Martınez, A., Ratsimandresy, A.W., Rodrıguez-Santana, A., 2005. Life history of an anticyclonic eddy. J. Geophys. Res. 110, C03021, doi:10.1029/2004JC002526.

Smith IV, D.C., O'Brien, J.J., 1983. The interaction of a two layer isolated mesoscale eddy with bottom topography. J. Phys. Oceanogr. 1681–1697.

Smith IV, D.C., Reid, R.O., 1982. A numerical study of nonfrictional decay of mesoscale eddies. J. Phys. Oceanogr. 12, 244–255.

Shu, Y.Q., Wang, D.X., Zhu, J., Peng, S.Q., 2011. The 4-D structure of upwelling and Pearl River plume in the northern South China Sea during summer 2008 revealed by a data assimilation model. Ocean Modelling 36, 228–241.

Su, J., Lu, J., Hou, Y.J., Fang, G., Wei, Z., Yin, B., 2002. Analysis of satellite-tracked drifting buoys in the South China Sea. Oceanol. Limnol. Sinica 33(2), 121–127 (in Chinese with English abstract).

Sutyrin, G.G., Rowe, G.D., Rothstein, L.M., Gins, I., 2003. Baroclinic eddy interactions with continental slopes and shelves. J. Phys. Oceanogr. 283–291.

Wang, D.X., Xu, H.Z., Lin, J., Hu, J.Y., 2008. Anticyclonic Eddies in the Northeastern South China Sea during Winter 2003/2004. J. Oceanogr. 64, 925–935.

Wang, D., Wang, Q., Zhou, W., Cai, S., Li, L., Hong, B., 2013. An analysis of the current deflection around Dongsha Islands in the northern South China Sea. J. Geophys. Res. Oceans 118, 490–501, doi:10.1029/2012JC008429.

Wang, G., Su, J., Chu, P.C., 2003. Mesoscale eddies in the South China Sea observed with altimeter data. Geophys. Res. Lett. 30, 2121, doi:10.1029/2003GL018532,21.

Wang, L., Koblinsky, C.J., and Howden, S., 2000. Mesoscale variability in the South China Sea from the TOPEX/Poseidon altimetry data. Deep-Sea Res., Part I 47, 681–708. 460.

Wang, Q., Wang, Y.X., Hong, B., Zhou, W.D., Wang, D.X., 2011. Different roles of Ekman pumping in the west and east segments of the South China Sea Warm Current. ActaOceanol.Sin. 30(3), 1–13.

Wang, Q., Zeng, L., Zhou, W., Xie, Q., Cai, S., Yao, J., Wang, D., 2015. Mesoscale eddies cases study at Xisha waters in the South China Sea in 2009/2010. J. Geophys. Res. Oceans 120, doi:10.1002/2014JC009814.

Wei, J., Wang, D.P., 2009. A three-dimensional model study of warm core ring interaction with continental shelf and slope. 470 Cont.Shelf.Res 29, 1635–1642.

Wyrtki, K., 1961. Physical oceanography of the Southeast Asian waters. Naga Rep. 2, 1–195.

Xiu, P., Chai, F., Shi, L., Xue, H.J., and Chao, Y., 2010. A census of eddy activities in the South China Sea during 1993–2007. J. Geophys.Res. 115, C03012, doi:10.1029/2009JC005657.

Xu, F.H., Oey, L.Y., 2014. State analysis using the Local Ensemble Transform Kalman Filter (LETKF) and the three-layer circulation structure of the Luzon Strait and the South China Sea. Ocean Dyn. 64, 905–923.

Xu, F.H., Oey, L.Y., 2015. Seasonal SSH variability of the northern South China Sea. J Phys Oceanogr 45, 1595–1609.

Xu, X. Z., Qiu, Z., and Chen, H.C., 1982. The general descriptions of the horizontal circulation in the South China Sea. In: Proceedings of the 1980 Symposium on Hydrometeorology of the Chinese Society of Oceanology and Limnology, Sci. Press, Beijing. p. 137–145 (in Chinese with English abstract).

Yang, H., Liu, Q., Liu, Z., Wang, D., and Liu, X., 2002. A general circulation model study of the dynamics of the upper ocean circulation of the South China Sea. J. Geophys. Res. 107(C7), doi:10.1029/2001JC001084.

Yang, K., Shi, P., Wang, D., and Qi, Y., 2000. Numerical study about the mesoscale multi-eddy system in the northern South China Sea in winter. Acta Oceanol. Sinica 22(1), 27–34 (in Chinese with English abstract).

Yuan, D., Han, W., and Hu, D., 2006. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. J. Geophys. Res. 111, C11007, doi:10.1029/2005JC003412495.

Yuan, D., Han, W., and Hu, D., 2007. Anti-cyclonic eddies northwest of Luzon in summer–fall observed by satellite altimeters. Geophys. Res. Lett. 34, L13610, doi:10.1029/2007GL029401.

Yuan, Y.C., Liao, G.H., Yang, C.G., 2008. The Kuroshio near the Luzon Strait and Circulation in the Northern South China Sea during August and September1994. J. Oceanogr 64, 777–788.

Zeng, L.L., Shi, P., Liu, W. T., Wang, D.X., 2009. Evaluation of a satellite-derived latent heat flux product in the South China Sea: A comparison with moored buoy dat and various products. Atmospheric Research 94(1), 91–105.

Zhang, Z., Zhao, W., Tian, J., and Liang, X., 2013. A mesoscale eddy pair southwest of Taiwan and its influence on deep circulation. J. Geophys. Res. Oceans 118, 6479–6494, doi:10.1002/2013JC008994.

Zhang, Z.,Zhao, W., Tian, J., Yang, Q., and Qu, T., 2015. Spatial structure and temporal variability of the zonal flow in the Luzon Strait. J. Geophys. Res.Oceans 120, 759–776, doi:10.1002/2014JC010308.

Zhang, Z.W., Tian, J.W., Qiu, B., Zhao, W., Chang, P., Wu, D.X., Wan, X.Q., 2016. Observed 3D Structure, Generation, and Dissipation of Oceanic Mesoscale Eddies in the South China Sea. Sci. Rep. 6, 24349.

Zhuang, W., Du, Y., Wang, D.X., Xie, Q., and Xie, S.P., 2010. Pathways of mesoscale variability in the South China Sea. Chinese Journal of Oceanology and Limnology 28(5), 1055–1067, DOI: 10.1007/s00343-010-0035-x 515.

Zu, T.T., Wang, D.X., Yan, C.X., Belkin, I., Zhuang, W., Chen, J., 2013. Evolution of an anticyclonic eddy southwest of Taiwan. Ocean Dynam. 63, 519–531.

Published

2016-07-02