Seasonal and spatial variability of surface chlorophyll inside mesoscale eddies in the South China Sea

Authors

  • Peng Xiu State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
  • Mingxian Guo State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
  • Lili Zeng State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
  • Na Liu State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
  • Fei Chai State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China

Keywords:

mesoscale eddy, eddy pumping

Abstract

Mesoscale eddies can influence biogeochemical cycles through both vertical nutrient or plankton flux and horizontal advection of nutrient or plankton in eddy periphery. In this study, we analyzed the seasonal and spatial variability of near-sea-surface chlorophyll-a concentrations and their corresponding modulation mechanisms by collocating satellite observations of eddies tracked during 1998–2007 in the South China Sea. We found that in winter, cyclonic eddies show significantly high chlorophyll-a in the eddy core relative to the periphery, suggesting regulation by an eddy-pumping mechanism. While in summer, chlorophyll-a values in the core of cyclonic eddies are comparable with those in the periphery, and dipole features of chlorophyll-a around cyclonic eddies are conspicuous, which is largely induced by horizontal eddy advection. For anticyclonic eddies, however, low chlorophyll-a in eddy cores compared with the periphery are consistently present over most of the year. The impact of eddy advection on chlorophyll-a distribution in anticyclonic eddies is not clear from the composite images in different seasons. Variability of chlorophyll-a to the west of the Luzon Strait and northwest of the Luzon Island demonstrate that phytoplankton biomass in these two regions is mainly controlled by an eddy-pumping mechanism. In the regions off the Vietnam coast, chlorophyll-a distributions are generally associated with horizontal eddy advection. This research highlights different mesoscale mechanisms affecting biological structures in the upper ocean, which can potentially disturb ocean biogeochemical cycling processes in the South China Sea.

References

Chelton, D.B., Schlax, M.G., Samelson, R.M., 2011a. Global observations of nonlinear mesoscale eddies. Progress in Oceanography 91(2), 167–216.

Chelton, D.B., Gaube, P., Schlax, M.G., Early, J.J., Samelson, R.M., 2011b. The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll. Science 334(6054), 328–332.

Chen, G., Hou, Y., Chu, X., 2011. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J. Geophys. Res. 116, C06018, doi:10.1029/2010JC006716.

Chen, Y.-L., Chen, H.-Y., Lin, I.-I., Lee, M.-A., Change, J., 2007. Effects of cold eddy on phytoplankton production and assemblages in Luzon strait bordering the south china sea. J. Oceanogr. 63, 671–683.

Chu, P.C., Chen, Y., Lu, S., 1998. Wind-driven South China Sea deep basin warm-core/cool core eddies. Journal of Oceanography 54, 347–360.

Gan, J., Li, H., Curchitser, E.N., Haidvogel, D.B., 2006. Modeling South China Sea circulation: Response to seasonal forcing regimes. Journal of Geophysical Research 111, C06034, doi:10.1029/2005JC003298.

Gaube, P., Chelton, D.B., Strutton, P.G., Behrenfeld, M.J., 2013. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. Oceans 118, 6349–6370.

Guo, M., Chai, F., Xiu, P., Li, S., Rao, S., 2015. Impacts of mesoscale eddies in the South China Sea on biogeochemical cycles. Ocean Dynamics doi:10.1007/s10236-015-0867-1.

Hu, J., Gan, J., Sun, Z., Zhu, J., Dai, M., 2011. Observed three‐dimensional structure of a cold eddy in the southwestern South China Sea. J. Geophys. Res. 116, C05016, doi:10.1029/2010JC006810.

Lévy, M., Memery, L., Madec, G., 1998. The onset of a bloom after deep winter convection in the northwestern Mediterranean sea: mesoscale process study with a primitive equation model. Journal of Marine System 16, 7–21, 1998.

Li, J., Qi, Y., Jing, Z., Wang, J., 2014. Enhancement of eddy-Ekman pumping inside anticyclonic eddies with wind-parallel extension: Satellite observations and numerical studies in the South China Sea. Journal of Marine Systems 132, 150–161.

Li, L., Nowlin, W.D., Su, J., 1998. Anticyclonic rings from the Kuroshio in the South China Sea. Deep Sea Res. I 45, 1469–1482.

Lin, I-I., Lien, C-C., Wu, C-R., Wong, G.T.F., Huang, C-W., Chiang, T-L., 2010. Enhanced primary production in the oligotrophic South China Sea by eddy injection in spring. Geophys. Res. Lett. 37, L16602, doi:10.1029/2010GL043872.

Liu, K.K., Chao, S.Y., Shaw, P.T., Gong, G.C., Chen, C.C., Tang, T.Y., 2002. Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep-Sea Research I 49, 1387–1412.

McGillicuddy, D.J., Robinson, A.R., Siegel, D.A., Jannasch, H.W., Johnson, R., Dickey, T.D., McNeil, J., Michaels, A.F., Knap, A.H., 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394, 263–266.

Nencioli, F., Kuwahara, V.S., Dickey, T.D., Rii, Y.M., Bidigare, R.R., 2008. Physical dynamics and biological implications of a mesoscale eddy in the lee of Hawaii: Cyclone Opal observations during E-Flux III. Deep Sea Research II 35, 1252–1274.

Ning, X., Chai, F., Xue, H., Cai, Y., Liu, C., Zhu, G., Shi, J., 2004. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea. J. Geophys. Res. 109, C10005, doi:10.1029/2004JC002365.

Shaw, P.T., Chao, S.Y., 1994. Surface circulation in South China Sea. Deep-Sea Research I 40, 1663–1683.

Siegel, D.A., Peterson, P., McGillicuddy, D.J., Maritorena, S., Nelson, N.B., 2011. Bio-optical footprints created by mesoscale eddies in the Sargasso Sea. Geophysical Research Letters 38, L13608, doi:10.1029/2011GL047660.

Soong, Y.S., Hu, J.H., Ho, C.R., Niiler, P.P., 1995. Cold-core eddy detected in South China Sea, Eos Transactions AGU 76, 345.

Wang, D., Xu, H., Lin, J., Hu, J., 2008. Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004. Journal of Oceanography 64, 925–935.

Wang, G., Su, J., Chu, P.C., 2003. Mesoscale eddies in the South China Sea detected from altimeter data. Geophysical Research Letters 30, 2121, doi:10.1029/2003GL018532.

Wang, J., Tang, D., Sui, Y., 2010. Winter phytoplankton bloom induced by subsurface upwelling and mixed layer entrainment southwest of Luzon Strait. Journal of Marine Systems 83, 141–149.

Wyrtki, K., 1961. Physical oceanography of the south-east Asian waters. NAGA Reprot Vol. 2, Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand. Scripps Institution of Oceanography, La Jolla, California.

Xie, S.P., Xie, Q., Wang, D.X., Liu, W.T., 2003. Summer upwelling in the South China Sea and its role in regional climate variations. Journal of Geophysical research 108(C8), 3261, doi:10.1029/2003JC001867.

Xiu, P., Chai, F., 2011. Modeled biogeochemical responses to mesoscale eddies in the South China Sea. Journal of Geophysical Research Oceans 116, C10006, doi:10.1029/2010JC006800.

Xiu, P., Chai, F., Shi, L., Xue, H., Chao, Y., 2010. A census of eddy activities in the South China Sea during 1993–2007. Journal of Geophysical Research 115, C03012, doi:10.1029/2009JC005657.

Yuan, D., Han, W., Hu, D., 2007. Anti-cyclonic eddies northwest of Luzon in summer–fall observed by satellite altimeters. Geophysical Research Letters 34, L13610, doi:10.1029/2007GL029401.

Zhang, Z., Wang, W., Qiu, B., 2014. Oceanic mass transport by mesoscale eddies. Science 345(6194), 322–324.

Zhou, K., Dai, M., Kao, S.-J., Wang, L., Xiu, P., Chai, F., Tian, J., Liu, Y., 2013. Apparent enhancement of 234Th-based particle export associated with anticyclonic eddies. Earth and Planetary Science Letters 381, 198–209.

Zhuang, W., Xie, S.-P., Wang, D., Taguchi, B., Aiki, H., Sasaki, H., 2010. Intraseasonal variability in sea surface height over the South China Sea. J. Geophys. Res. 115, C04010, doi:10.1029/2009JC005647.

Published

2016-07-02