Investigation of trends in extreme significant wave heights in the South China Sea

Authors

  • Y. Luo State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
  • L. S. Zhu School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641 China

Keywords:

extreme wave, extreme climate change, extreme value theory

Abstract

The focus of this study was the temporal and spatial variations of extreme significant wave heights and nearshore return-period wave heights in the South China Sea, based on the wave model and European Reanalysis-Interim data from 1979–2016. Measured buoy data were available from near Yongxing Island for comparison with the reanalysis data during the passage of typhoons. Annual maximum significant wave heights showed a statistically significant increasing trend over most of the South China Sea, whereas statistically insignificant decreasing or increasing trends were observed for seasonal maximum significant wave heights associated with the different characteristics of the typhoon events. Nonstationary generalized extreme value analysis was used to investigate the influence of nearshore extreme significant wave heights derived from the Simulating Waves Nearshore model at four offshore locations in the South China Sea. The fastest increase of 100-year return significant wave heights was found to be 0.0033 m yr−1 in the western South China Sea. The results show that, in recent decades, no significant variation trends can be found in return-period wave heights at nearshore of South China Sea, which may be related to tracks of intense typhoons in the region.

References

Bidlot, J-R

, Janssen, P

, Abdalla, S.

, 2007. Impact of the revised formulation for ocean wave dissipation on the ECMWF operational wave model. Tech Memo 509, ECMWF: Reading, UK.

Booij, N

, Ris, RC

, Holthuijsen, LH.

, 1999. A third-generation wave model for coastal regions 1. Model description and validation. J. Geophys. Res. C. Oceans 104(c4), 7649–7666.

Cheng, L

, Aghakouchak, A

, Gilleland, E

, Katz, R.W.

, 2014. Non-stationary extreme value analysis in a changing climate. Climatic Change 127(2), 353–369.

Coles, S.

, 2001.

An introduction to statistical modeling of extreme values

. Springer, London.

Cooley, D.

, 2009. Extreme value analysis and the study of climate change. Climatic Change 97, 77–83

Cooley, D.

, 2013.

Return periods and return levels under climate change: Extremes in a changing climate

. Springer, Netherlands.

Dee, D.P.

, Uppala, S.M.

, 2008.

Variational bias correction in ERA-Interim. Tech Memo 575

, ECMWF: Reading, UK (available from www.ecmwf.int/publications).

Dee, D.P.

, Uppala, S.

, 2009. Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Q J Roy Meteor Soc, 135(644), 1830–1841.

Dee, DP

, Uppala, SM

, Simmons, AJ

, Berrisford, P

, Poli, P

, Kobayashi, S.

, Andrae, U.

, Balmaseda, M.A.

, Balsamo, G.

, Bauer, P.

, Bechtold, P.

, Beljaars, A.C.M.

, van der Berg, L.

, Bidlot, J.

, Bormann, N.

, Delsol, C.

, Dragani, R.

, Fuentes, M.

, Geer, A.J.

, Haimberger, L.

, Healy, S.B.

, Hersbach, H.

, Holm, E.V.

, Isaksen, L.

, Kallberg, P.

, Kohler, M.

, Matricardi, M.

, McNally, A.P.

, Monge-Sanz, B.M.

, Morcrette, J-J.

, Park, B-K.

, Peubey, C.

, de Rosnay, P.

, Tavolato, C.

, Thepaut, J-N.

, Vitart, F.

, 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteor Soc, 137(656), 553–597.

Dietrich, JC

, Zijlema, M

, Westerink, JJ

, Holthuijsen, LH

, Dawson, C

, Leuttich, Jr., RA.

, Jensen, R.E.

, Smith, J.M.

, Stelling, G.S.

, Stone, G.W.

, 2011. Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coast Eng, 58(1), 45–65.

Graham, HE

, Nunn, DE.

, 1959. Meteorological conditions pertinent to standard project hurricane. Atlantic and Gulf Coasts of United States, National Hurricane Research Project, Report No. 3, US Weather Service.

Izaguirre, C

, Méndez, FJ

, Espejo, A

, Losada, IJ

, Reguero, BG.

, 2013. Extreme wave climate changes in Central–South America. Climatic Change 119(2), 277–290.

Jelesnianski, CP.

, 1965. A numerical calculation of storm tides induced by a tropical storm impinging on a continental shelf. Mon Weather Rev. 93(6), 83–88.

Katz, RW.

, Parlange, M.B.

, Naveau, P.

, 2002. Statistics of extremes in hydrology. Adv Water Res. 25, 1287–1304.

Katz, RW

., 2010. Statistics of extremes in climate change. Climatic Change 100(1), 71–76.

Kumar, P

, Min, SK

, Weller, E

, Lee, H

, Wang, XL.

, 2016. Influence of climate variability on extreme ocean surface wave heights assessed from ERA-Interim and ERA-20c. J Climate, 29(11), 160314154953007.

Osinowo, A

, Lin, X

, Zhao, D

, Wang, Z.

, 2016. Long-term variability of extreme significant wave height in the South China Sea, Adv Meteorol, vol. 2016, Article ID 2419353, 21 pages, 2016. doi:10.1155/2016/2419353.

Renard, B

, Sun X

, Lang, M.

, 2013.

Bayesian Methods for Non-stationary Extreme Value Analysis. Extremes in a Changing Climate

. Springer, Netherlands.

Ris, RC

, Booij, N

, Holthuijsen, LH.

, 1999. A third-generation wave model for coastal regions, Part II, verification. J. Geophys. Res., 104, 7667–7681.

Rogers, WE

, Hwang, PA

, Wang, DW.

, 2003. Investigation of wave growth and decay in the SWAN model: three regional-scale applications. J. Phys. Oceanogr, 33, 366–389.

Rootzén, H

, Katz, RW.

, 2013. Design life level: quantifying risk in a changing climate. Water Resour. Res. 49, 5964–5972.

Rosenthal, W

, Stawarz. M

, Carretero. JC

, Gomez. M

, Lozano,. I

, Serrano, O.

, 1998. The wave climate of the northeast Atlantic over the period 1955–1994: The WASA wave hindcast. Global Atmos. Ocean System, 6, 121–163.

Salas, JD

, Obeysekera, J.

, 2013. Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. J. Hydrol. Eng. doi:10.1061/(ASCE)HE.1943-5584.0000820

Shanas, PR

, Kumar, VS.

, 2014a. Temporal variations in the wind and wave climate at a location in the eastern Arabian Sea based on ERA-Interim reanalysis data. Nat. Hazard Earth Sys., 14(5), 7239–7269.

Shanas PR

, Kumar, VS.

, 2014b. Trends in surface wind speed and significant wave height as revealed by ERA-Interim wind wave hindcast in the Central Bay of Bengal. Int. J. Climatol, doi: 10.1002/joc.4164.

Vinoth, J.

, Young, IR.

, 2011. Global estimates of extreme wind speed and wave height. J. Climate 24(6), 1647–1665, doi:10.1175/2010JCLI3680.1.

Wang, XL.

, Swail, VR.

, 2001. Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes. J. Climate 14(10), 2204–2221.

Wang, XL

, Swail, VR.

, 2006. Climate change signal and uncertainty in projections of ocean wave heights. Clim. Dynam. 26(26), 109–126.

Webster, PJ

, Holland, GJ

, Curry, JA

, Chang, HR.

, 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309(5742), 1844–1846.

Yang, L.

, Du, Y.

, Wang, D.

, Wang, C.

, Wang, X.

, 2015. Impact of intraseasonal oscillation on the tropical cyclone track in the South China Sea. Clim. Dyn. 44, 1505–1519, doi:10.1007/s00382-014-2180-y.

Yang, L.

, Chen, S.

, Wang, C.

, Wang, D.

, Wang, X.

, 2017. Potential impact of the Pacific Decadal Oscillation and sea surface temperature in the tropical Indian Ocean–Western Pacific on the variability of typhoon landfall on the China coast. Climate Dynamics, doi:10.1007/s00382-017-4037-7.

Young, I.R.

, 1999. Seasonal variability of the global ocean wind and wave climate. Int. J. Climatol. 19(9), 931–950.

Young, I.R

, Zieger, S

, Babanin, AV.

, 2011. Global trends in wind speed and wave height. Science 332(6028), 451.

Young, I.R

, Vinoth, J.

, Zieger, S

, Babanin AV.

, 2012. Investigation of trends in extreme value wave height and wind speed. J Geophys. Res-Oceans 117(3), 67–75.

Zijlema, M.

, 2010. Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coast Eng, 57(3), 267–277.

Published

2019-01-02