How to learn to stop worrying and love environmental DNA monitoring

Authors

  • John A. Darling National Exposure Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA

Keywords:

surveillance, biodiversity, biosecurity, environmental DNA

Abstract

Environmental DNA is one of the most promising new tools in the aquatic biodiversity monitoring toolkit, with particular appeal for applications requiring assessment of target taxa at very low population densities. And yet there persists considerable anxiety within the management community regarding the appropriateness of environmental DNA monitoring for certain tasks and the degree to which environmental DNA methods can deliver information relevant to management needs. This brief perspective piece is an attempt to address that anxiety by offering some advice on how end-users might best approach these new technologies. I do not here review recent developments in environmental DNA science, but rather I explore ways in which managers and decision-makers might become more comfortable adopting environmental DNA tools—or choosing not to adopt them, should circumstances so dictate. I attempt to contextualize the central challenges associated with acceptance of environmental DNA detection by contrasting them with traditional “catch-and-look” approaches to biodiversity monitoring. These considerations lead me to recommend the cultivation of four “virtues,” attitudes that can be brought into engagement with environmental DNA surveillance technologies that I hope will increase the likelihood that those engagements will be positive and that the future development and application of environmental DNA tools will further the cause of wise management.

References

Alberdi, A.

, Aizpurua, O.

, Gilbert, M.T.P.

, Bohmann, K.

, Mahon, A.

, 2018. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods in Ecology and Evolution 9, 134–147. doi:10.1111/2041-210X.12849

Asner, G.P.

, Martin, R.E.

, 2009. Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests. Frontiers in Ecology and the Environment 7, 269–276. doi:10.1890/070152

Barnes, M.A.

, Turner, C.R.

, 2015. The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics 17, 1–17. doi:10.1007/s10592-015-0775-4

Bicknell, A.W.J.

, Godley, B.J.

, Sheehan, E.V.

, Votier, S.C.

, Witt, M.J.

, 2016. Camera technology for monitoring marine biodiversity and human impact. Frontiers in Ecology and the Environment 14, 424–432. doi:10.1002/fee.1322

Bohan, D.A.

, Vacher, C.

, Tamaddoni-Nezhad, A.

, Raybould, A.

, Dumbrell, A.J.

, Woodward, G.

, 2017. Next-Generation Global Biomonitoring: Large-scale, Automated Reconstruction of Ecological Networks. Trends in Ecology & Evolution 32, 477–487. doi:10.1016/j.tree.2017.03.001

Bohmann, K.

, Evans, A.

, Gilbert, M.T.P.

, Carvalho, G.R.

, Creer, S.

, Knapp, M.

, Yu, D.W.

, de Bruyn, M.

, 2014. Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology & Evolution 29, 358–367. doi:10.1016/j.tree.2014.04.003

Cavender-Bares, J.

, Meireles, J.

, Couture, J.

, Kaproth, M.

, Kingdon, C.

, Singh, A.

, Serbin, S.

, Center, A.

, Zuniga, E.

, Pilz, G.

, Townsend, P.

, 2016. Associations of Leaf Spectra with Genetic and Phylogenetic Variation in Oaks: Prospects for Remote Detection of Biodiversity. Remote Sensing 8, 221. doi:10.3390/rs8030221

Chen, W.

, Ficetola, G.F.

, 2019. Conditionally autoregressive models improve occupancy analyses of autocorrelated data: An example with environmental DNA. Molecular Ecology Resources 19, 163–175. doi:10.1111/1755-0998.12949

Coble, A.A.

, Flinders, C.A.

, Homyack, J.A.

, Penaluna, B.E.

, Cronn, R.C.

, Weitemier, K.

, 2019. eDNA as a tool for identifying freshwater species in sustainable forestry: A critical review and potential future applications. The Science of the Total Environment 649, 1157–1170. doi:10.1016/j.scitotenv.2018.08.370

Cristescu, M.E.

, Hebert, P.D.N.

, 2018. Uses and Misuses of Environmental DNA in Biodiversity Science and Conservation. Annual Review of Ecology

, Evolution, and Systematics 49, 209–230. doi:10.1146/annurev-ecolsys-110617-062306

Dahlman, S.

, 2010. Chicago River businesses to Corps of Engineers: Show us the carp!, In Loop North News. DCMSoft, LLC, Chicago.

Danovaro, R.

, Carugati, L.

, Berzano, M.

, Cahill, A.E.

, Carvalho, S.

, Chenuil, A.

, Corinaldesi, C.

, Cristina, S.

, David, R.

, Dell'Anno, A.

, Dzhembekova, N.

, Garcés, E.

, Gasol, J.M.

, Goela, P.

, Féral, J.-P.

, Ferrera, I.

, Forster, R.M.

, Kurekin, A.A.

, Rastelli, E.

, Marinova, V.

, Miller, P.I.

, Moncheva, S.

, Newton, A.

, Pearman, J.K.

, Pitois, S.G.

, Reñé, A.

, Rodríguez-Ezpeleta, N.

, Saggiomo, V.

, Simis, S.G.H.

, Stefanova, K.

, Wilson, C.

, Lo Martire, M.

, Greco, S.

, Cochrane, S.K.J.

, Mangoni, O.

, Borja, A.

, 2016. Implementing and Innovating Marine Monitoring Approaches for Assessing Marine Environmental Status. Frontiers in Marine Science 3, 213. doi:10.3389/fmars.2016.00213

Darling, J.A.

, Mahon, A.R.

, 2011. From molecules to management: Adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environmental Research 111, 978–988. doi:10.1016/j.envres.2011.02.001

Darras, K.F.A.

, Batary, P.

, Furnas, B.

, Fitriawan, I.

, Mulyani, Y.

, Tscharntke, T.

, 2017. Autonomous bird sound recording outperforms direct human observation: Synthesis and new evidence. BioRxiv doi:10.1101/117119.

Davis, A.J.

, Williams, K.E.

, Snow, N.P.

, Pepin, K.M.

, Piaggio, A.J.

, 2018. Accounting for observation processes across multiple levels of uncertainty improves inference of species distributions and guides adaptive sampling of environmental DNA. Ecology & Evolution 8, 10879–10892. doi:10.1002/ece3.4552

Deiner, K.

, Bik, H.M.

, Machler, E.

, Seymour, M.

, Lacoursiere-Roussel, A.

, Altermatt, F.

, Creer, S.

, Bista, I.

, Lodge, D.M.

, de Vere, N.

, Pfrender, M.E.

, Bernatchez, L.

, 2017. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology 26, 5872–5895. doi:10.1111/mec.14350

Diaz-Ferguson, E.

, Moyer, G.R.

, 2014. History, applications, methodological issues and perspectives for the use of environmental DNA (eDNA) in marine and freshwater environments. International Journal for Tropical Biology 62, 1273–1284. doi:10.15517/rbt.v62i4.13231

Doi, H.

, Akamatsu, Y.

, Watanabe, Y.

, Goto, M.

, Inui, R.

, Katano, I.

, Nagano, M.

, Takahara, T.

, Minamoto, T.

, 2017. Water sampling for environmental DNA surveys by using an unmanned aerial vehicle. Limnology and Oceanography: Methods 15, 939–944. doi:10.1002/lom3.10214

Evans, N.T.

, Lamberti, G.A.

, 2018. Freshwater fisheries assessment using environmental DNA: A primer on the method, its potential, and shortcomings as a conservation tool. Fisheries Research 197, 60–66. doi:10.1016/j.fishres.2017.09.013

Ficetola, G.F.

, Miaud, C.

, Pompanon, F.

, Taberlet, P.

, 2008. Species detection using environmental DNA from water samples. Biology Letters 4, 423–425. doi:10.1098/rsbl.2008.0118

Freeland, J.

, 2017. The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA (eDNA). Genome 60, 358–374. doi:10.1139/gen-2016-0100

Goldberg, C.S.

, Turner, C.R.

, Deiner, K.

, Klymus, K.E.

, Thomsen, P.F.

, Murphy, M.A.

, Spear, S.F.

, McKee, A.

, Oyler-McCance, S.J.

, Cornman, R.S.

, Laramie, M.B.

, Mahon, A.R.

, Lance, R.F.

, Pilliod, D.S.

, Strickler, K.M.

, Waits, L.P.

, Fremier, A.K.

, Takahara, T.

, Herder, J.E.

, Taberlet, P.

, Gilbert, M.

, 2016. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods in Ecology and Evolution 7, 1299–1307. doi:10.1111/2041-210X.12595

Haase, P.

, Pauls, S.U.

, Schindehütte, K.

, Sundermann, A.

, 2010. First audit of macroinvertebrate samples from an EU Water Framework Directive monitoring program: human error greatly lowers precision of assessment results. Journal of the North American Benthological Society 29, 1279–1291. doi:10.1899/09-183.1

Harper, L.R.

, Buxton, A.S.

, Rees, H.C.

, Bruce, K.

, Brys, R.

, Halfmaerten, D.

, Read, D.S.

, Watson, H.V.

, Sayer, C.D.

, Jones, E.P.

, Priestley, V.

, Mächler, E.

, Múrria, C.

, Garcés-Pastor, S.

, Medupin, C.

, Burgess, K.

, Benson, G.

, Boonham, N.

, Griffiths, R.A.

, Lawson Handley, L.

, Hänfling, B.

, 2018. Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia 826, 25–41. doi:10.1007/s10750-018-3750-5

Jerde, C.L.

, Mahon, A.R.

, Chadderton, W.L.

, Lodge, D.M.

, 2011. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters 4, 150–157. doi:10.1111/j.1755-263X.2010.00158.x

Ko, H.L.

, Wang, Y.T.

, Chiu, T.S.

, Lee, M.A.

, Leu, M.Y.

, Chang, K.Z.

, Chen, W.Y.

, Shao, K.T.

, 2013. Evaluating the accuracy of morphological identification of larval fishes by applying DNA barcoding. PLoS One 8, e53451. doi:10.1371/journal.pone.0053451

Lear, G.

, Dickie, I.

, Banks, J.

, Boyer, S.

, Buckley, H.

, Buckley, T.

, Cruickshank, R.

, Dopheide, A.

, Handley, K.

, Hermans, S.

, Kamke, J.

, Lee, C.

, MacDiarmid, R.

, Morales, S.

, Orlovich, D.

, Smissen, R.

, Wood, J.

, Holdaway, R.

, 2018. Methods for the extraction, storage, amplification and sequencing of DNA from environmental samples. New Zealand Journal of Ecology 42, 1A–50A. doi:10.20417/nzjecol.42.9

Leblanc, G.

, Francis, C.

, Soffer, R.

, Kalacska, M.

, de Gea, J.

, 2016. Spectral Reflectance of Polar Bear and Other Large Arctic Mammal Pelts; Potential Applications to Remote Sensing Surveys. Remote Sensing 8, 273. doi:10.3390/rs8040273

Leung, B.

, Lodge, D.M.

, Finnoff, D.

, Shogren, J.F.

, Lewis, M.A.

, Lamberti, G.

, 2002. An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proceedings of the Royal Society, Biological Sciences 269, 2407–2413. doi:10.1098/rspb.2002.2179

Linke, S.

, Gifford, T.

, Desjonquères, C.

, Tonolla, D.

, Aubin, T.

, Barclay, L.

, Karaconstantis, C.

, Kennard, M.J.

, Rybak, F.

, Sueur, J.

, 2018. Freshwater ecoacoustics as a tool for continuous ecosystem monitoring. Frontiers in Ecology and the Environment 16, 231–238. doi:10.1002/fee.1779

Möckel, T.

, Dalmayne, J.

, Schmid, B.

, Prentice, H.

, Hall, K.

, 2016. Airborne Hyperspectral Data Predict Fine-Scale Plant Species Diversity in Grazed Dry Grasslands. Remote Sensing 8, 133. doi:10.3390/rs8020133

Ottesen, E.A.

, 2016. Probing the living ocean with ecogenomic sensors. Current Opinion in Microbiology 31, 132–139. doi:10.1016/j.mib.2016.03.012

Packer, L.

, Gibbs, J.

, Sheffield, C.

, Hanner, R.

, 2009. DNA barcoding and the mediocrity of morphology. Molecular Ecology Resources 9 Suppl s1, 42–50. doi:10.1111/j.1755-0998.2009.02631.x

Pfrender, M.E.

, Hawkins, C.P.

, Bagley, M.J.

, Courtney, G.W.

, Creutzburg, B.R.

, Epler, J.H.

, Fend, S.

, Ferrington, L.C.

, Hartwell, P.L.

, Jackson, S.

, Larsen, D.P.

, Levesque, C.A.

, Morse, J.C.

, Petersen, M.G.

, Ruiter, D.

, 2010. Assessing macroinvertebrate biodiversity in freshwater ecosystems: Advances and challenges in DNA-based approaches. The Quarterly Review of Biology 85. doi:10.1086/655118

Puncher, G.N.

, Alemany, F.

, Arrizabalaga, H.

, Cariani, A.

, Tinti, F.

, 2015. Misidentification of bluefin tuna larvae: a call for caution and taxonomic reform. Reviews in Fish Biology and Fisheries 25, 485–502. doi:10.1007/s11160-015-9390-1

Rees, H.C.

, Maddison, B.C.

, Middleditch, D.J.

, Patmore, J.R.M.

, Gough, K.C.

, Crispo, E.

, 2014. The detection of aquatic animal species using environmental DNA - a review of eDNA as a survey tool in ecology. Journal of Applied Ecology 51, 1450–1459. doi:10.1111/1365-2664.12306

Rees, H.C.

, Baker, C.A.

, Gardner, D.S.

, Maddison, B.C.

, Gough, K.C.

, 2017. The detection of great crested newts year round via environmental DNA analysis. BMC Research Notes 10, 327. doi:10.1186/s13104-017-2657-y

Shaper, D.

, 2009. Chicago Canal Flooded With Toxin To Kill Asian Carp, In:

All Things Considered

. National Public Radio, Chicago.

Shaw, J.L.A.

, Weyrich, L.

, Cooper, A.

, 2017. Using environmental (e)DNA sequencing for aquatic biodiversity surveys: a beginner’s guide. Marine and Freshwater Research 68, 20. doi:10.1071/MF15361

Steenweg, R.

, Hebblewhite, M.

, Kays, R.

, Ahumada, J.

, Fisher, J.T.

, Burton, C.

, Townsend, S.E.

, Carbone, C.

, Rowcliffe, J.M.

, Whittington, J.

, Brodie, J.

, Royle, J.A.

, Switalski, A.

, Clevenger, A.P.

, Heim, N.

, Rich, L.N.

, 2017. Scaling-up camera traps: monitoring the planet's biodiversity with networks of remote sensors. Frontiers in Ecology and the Environment 15, 26–34. doi:10.1002/fee.1448

Stribling, J.B.

, 2006. Environmental protection using DNA barcodes or taxa? BioScience 565, 878–879. doi:10.1641/0006-3568(2006)56[878:EPUDBO2.0.CO;2]

Stribling, J.B.

, Pavlik, K.L.

, Holdsworth, S.M.

, Leppo, E.W.

, 2008. Data quality, performance, and uncertainty in taxonomic identification for biological assessments. Journal of the North American Benthological Society 27, 906–919. doi:10.1899/07-175.1

Venier, L.A.

, Mazerolle, M.J.

, Rodgers, A.

, McIlwrick, K.A.

, Holmes, S.

, Thompson, D.

, 2017. Comparison of semiautomated bird song recognition with manual detection of recorded bird song samples. Avian Conservation and Ecology 12, 2. doi:10.5751/ACE-01029-120202

Wearn, O.R.

, Glover-Kapfer, P.

, 2019. Snap happy: camera traps are an effective sampling tool when compared with alternative methods. Royal Society Open Science 6, 181748. doi:10.1098/rsos.181748

Xiong, W.

, Li, H.

, Zhan, A.

, 2016. Early detection of invasive species in marine ecosystems using high-throughput sequencing: technical challenges and possible solutions. Marine Biology 163. doi:10.1007/s00227-016-2911-1

Published

2019-10-02