How to learn to stop worrying and love environmental DNA monitoring
Keywords:
surveillance, biodiversity, biosecurity, environmental DNAAbstract
Environmental DNA is one of the most promising new tools in the aquatic biodiversity monitoring toolkit, with particular appeal for applications requiring assessment of target taxa at very low population densities. And yet there persists considerable anxiety within the management community regarding the appropriateness of environmental DNA monitoring for certain tasks and the degree to which environmental DNA methods can deliver information relevant to management needs. This brief perspective piece is an attempt to address that anxiety by offering some advice on how end-users might best approach these new technologies. I do not here review recent developments in environmental DNA science, but rather I explore ways in which managers and decision-makers might become more comfortable adopting environmental DNA tools—or choosing not to adopt them, should circumstances so dictate. I attempt to contextualize the central challenges associated with acceptance of environmental DNA detection by contrasting them with traditional “catch-and-look” approaches to biodiversity monitoring. These considerations lead me to recommend the cultivation of four “virtues,” attitudes that can be brought into engagement with environmental DNA surveillance technologies that I hope will increase the likelihood that those engagements will be positive and that the future development and application of environmental DNA tools will further the cause of wise management.
References
Alberdi, A.
, Aizpurua, O.
, Gilbert, M.T.P.
, Bohmann, K.
, Mahon, A.
, 2018. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods in Ecology and Evolution 9, 134–147. doi:10.1111/2041-210X.12849
Asner, G.P.
, Martin, R.E.
, 2009. Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests. Frontiers in Ecology and the Environment 7, 269–276. doi:10.1890/070152
Barnes, M.A.
, Turner, C.R.
, 2015. The ecology of environmental DNA and implications for conservation genetics. Conservation Genetics 17, 1–17. doi:10.1007/s10592-015-0775-4
Bicknell, A.W.J.
, Godley, B.J.
, Sheehan, E.V.
, Votier, S.C.
, Witt, M.J.
, 2016. Camera technology for monitoring marine biodiversity and human impact. Frontiers in Ecology and the Environment 14, 424–432. doi:10.1002/fee.1322
Bohan, D.A.
, Vacher, C.
, Tamaddoni-Nezhad, A.
, Raybould, A.
, Dumbrell, A.J.
, Woodward, G.
, 2017. Next-Generation Global Biomonitoring: Large-scale, Automated Reconstruction of Ecological Networks. Trends in Ecology & Evolution 32, 477–487. doi:10.1016/j.tree.2017.03.001
Bohmann, K.
, Evans, A.
, Gilbert, M.T.P.
, Carvalho, G.R.
, Creer, S.
, Knapp, M.
, Yu, D.W.
, de Bruyn, M.
, 2014. Environmental DNA for wildlife biology and biodiversity monitoring. Trends in Ecology & Evolution 29, 358–367. doi:10.1016/j.tree.2014.04.003
Cavender-Bares, J.
, Meireles, J.
, Couture, J.
, Kaproth, M.
, Kingdon, C.
, Singh, A.
, Serbin, S.
, Center, A.
, Zuniga, E.
, Pilz, G.
, Townsend, P.
, 2016. Associations of Leaf Spectra with Genetic and Phylogenetic Variation in Oaks: Prospects for Remote Detection of Biodiversity. Remote Sensing 8, 221. doi:10.3390/rs8030221
Chen, W.
, Ficetola, G.F.
, 2019. Conditionally autoregressive models improve occupancy analyses of autocorrelated data: An example with environmental DNA. Molecular Ecology Resources 19, 163–175. doi:10.1111/1755-0998.12949
Coble, A.A.
, Flinders, C.A.
, Homyack, J.A.
, Penaluna, B.E.
, Cronn, R.C.
, Weitemier, K.
, 2019. eDNA as a tool for identifying freshwater species in sustainable forestry: A critical review and potential future applications. The Science of the Total Environment 649, 1157–1170. doi:10.1016/j.scitotenv.2018.08.370
Cristescu, M.E.
, Hebert, P.D.N.
, 2018. Uses and Misuses of Environmental DNA in Biodiversity Science and Conservation. Annual Review of Ecology
, Evolution, and Systematics 49, 209–230. doi:10.1146/annurev-ecolsys-110617-062306
Dahlman, S.
, 2010. Chicago River businesses to Corps of Engineers: Show us the carp!, In Loop North News. DCMSoft, LLC, Chicago.
Danovaro, R.
, Carugati, L.
, Berzano, M.
, Cahill, A.E.
, Carvalho, S.
, Chenuil, A.
, Corinaldesi, C.
, Cristina, S.
, David, R.
, Dell'Anno, A.
, Dzhembekova, N.
, Garcés, E.
, Gasol, J.M.
, Goela, P.
, Féral, J.-P.
, Ferrera, I.
, Forster, R.M.
, Kurekin, A.A.
, Rastelli, E.
, Marinova, V.
, Miller, P.I.
, Moncheva, S.
, Newton, A.
, Pearman, J.K.
, Pitois, S.G.
, Reñé, A.
, Rodríguez-Ezpeleta, N.
, Saggiomo, V.
, Simis, S.G.H.
, Stefanova, K.
, Wilson, C.
, Lo Martire, M.
, Greco, S.
, Cochrane, S.K.J.
, Mangoni, O.
, Borja, A.
, 2016. Implementing and Innovating Marine Monitoring Approaches for Assessing Marine Environmental Status. Frontiers in Marine Science 3, 213. doi:10.3389/fmars.2016.00213
Darling, J.A.
, Mahon, A.R.
, 2011. From molecules to management: Adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environmental Research 111, 978–988. doi:10.1016/j.envres.2011.02.001
Darras, K.F.A.
, Batary, P.
, Furnas, B.
, Fitriawan, I.
, Mulyani, Y.
, Tscharntke, T.
, 2017. Autonomous bird sound recording outperforms direct human observation: Synthesis and new evidence. BioRxiv doi:10.1101/117119.
Davis, A.J.
, Williams, K.E.
, Snow, N.P.
, Pepin, K.M.
, Piaggio, A.J.
, 2018. Accounting for observation processes across multiple levels of uncertainty improves inference of species distributions and guides adaptive sampling of environmental DNA. Ecology & Evolution 8, 10879–10892. doi:10.1002/ece3.4552
Deiner, K.
, Bik, H.M.
, Machler, E.
, Seymour, M.
, Lacoursiere-Roussel, A.
, Altermatt, F.
, Creer, S.
, Bista, I.
, Lodge, D.M.
, de Vere, N.
, Pfrender, M.E.
, Bernatchez, L.
, 2017. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology 26, 5872–5895. doi:10.1111/mec.14350
Diaz-Ferguson, E.
, Moyer, G.R.
, 2014. History, applications, methodological issues and perspectives for the use of environmental DNA (eDNA) in marine and freshwater environments. International Journal for Tropical Biology 62, 1273–1284. doi:10.15517/rbt.v62i4.13231
Doi, H.
, Akamatsu, Y.
, Watanabe, Y.
, Goto, M.
, Inui, R.
, Katano, I.
, Nagano, M.
, Takahara, T.
, Minamoto, T.
, 2017. Water sampling for environmental DNA surveys by using an unmanned aerial vehicle. Limnology and Oceanography: Methods 15, 939–944. doi:10.1002/lom3.10214
Evans, N.T.
, Lamberti, G.A.
, 2018. Freshwater fisheries assessment using environmental DNA: A primer on the method, its potential, and shortcomings as a conservation tool. Fisheries Research 197, 60–66. doi:10.1016/j.fishres.2017.09.013
Ficetola, G.F.
, Miaud, C.
, Pompanon, F.
, Taberlet, P.
, 2008. Species detection using environmental DNA from water samples. Biology Letters 4, 423–425. doi:10.1098/rsbl.2008.0118
Freeland, J.
, 2017. The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA (eDNA). Genome 60, 358–374. doi:10.1139/gen-2016-0100
Goldberg, C.S.
, Turner, C.R.
, Deiner, K.
, Klymus, K.E.
, Thomsen, P.F.
, Murphy, M.A.
, Spear, S.F.
, McKee, A.
, Oyler-McCance, S.J.
, Cornman, R.S.
, Laramie, M.B.
, Mahon, A.R.
, Lance, R.F.
, Pilliod, D.S.
, Strickler, K.M.
, Waits, L.P.
, Fremier, A.K.
, Takahara, T.
, Herder, J.E.
, Taberlet, P.
, Gilbert, M.
, 2016. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods in Ecology and Evolution 7, 1299–1307. doi:10.1111/2041-210X.12595
Haase, P.
, Pauls, S.U.
, Schindehütte, K.
, Sundermann, A.
, 2010. First audit of macroinvertebrate samples from an EU Water Framework Directive monitoring program: human error greatly lowers precision of assessment results. Journal of the North American Benthological Society 29, 1279–1291. doi:10.1899/09-183.1
Harper, L.R.
, Buxton, A.S.
, Rees, H.C.
, Bruce, K.
, Brys, R.
, Halfmaerten, D.
, Read, D.S.
, Watson, H.V.
, Sayer, C.D.
, Jones, E.P.
, Priestley, V.
, Mächler, E.
, Múrria, C.
, Garcés-Pastor, S.
, Medupin, C.
, Burgess, K.
, Benson, G.
, Boonham, N.
, Griffiths, R.A.
, Lawson Handley, L.
, Hänfling, B.
, 2018. Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia 826, 25–41. doi:10.1007/s10750-018-3750-5
Jerde, C.L.
, Mahon, A.R.
, Chadderton, W.L.
, Lodge, D.M.
, 2011. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters 4, 150–157. doi:10.1111/j.1755-263X.2010.00158.x
Ko, H.L.
, Wang, Y.T.
, Chiu, T.S.
, Lee, M.A.
, Leu, M.Y.
, Chang, K.Z.
, Chen, W.Y.
, Shao, K.T.
, 2013. Evaluating the accuracy of morphological identification of larval fishes by applying DNA barcoding. PLoS One 8, e53451. doi:10.1371/journal.pone.0053451
Lear, G.
, Dickie, I.
, Banks, J.
, Boyer, S.
, Buckley, H.
, Buckley, T.
, Cruickshank, R.
, Dopheide, A.
, Handley, K.
, Hermans, S.
, Kamke, J.
, Lee, C.
, MacDiarmid, R.
, Morales, S.
, Orlovich, D.
, Smissen, R.
, Wood, J.
, Holdaway, R.
, 2018. Methods for the extraction, storage, amplification and sequencing of DNA from environmental samples. New Zealand Journal of Ecology 42, 1A–50A. doi:10.20417/nzjecol.42.9
Leblanc, G.
, Francis, C.
, Soffer, R.
, Kalacska, M.
, de Gea, J.
, 2016. Spectral Reflectance of Polar Bear and Other Large Arctic Mammal Pelts; Potential Applications to Remote Sensing Surveys. Remote Sensing 8, 273. doi:10.3390/rs8040273
Leung, B.
, Lodge, D.M.
, Finnoff, D.
, Shogren, J.F.
, Lewis, M.A.
, Lamberti, G.
, 2002. An ounce of prevention or a pound of cure: bioeconomic risk analysis of invasive species. Proceedings of the Royal Society, Biological Sciences 269, 2407–2413. doi:10.1098/rspb.2002.2179
Linke, S.
, Gifford, T.
, Desjonquères, C.
, Tonolla, D.
, Aubin, T.
, Barclay, L.
, Karaconstantis, C.
, Kennard, M.J.
, Rybak, F.
, Sueur, J.
, 2018. Freshwater ecoacoustics as a tool for continuous ecosystem monitoring. Frontiers in Ecology and the Environment 16, 231–238. doi:10.1002/fee.1779
Möckel, T.
, Dalmayne, J.
, Schmid, B.
, Prentice, H.
, Hall, K.
, 2016. Airborne Hyperspectral Data Predict Fine-Scale Plant Species Diversity in Grazed Dry Grasslands. Remote Sensing 8, 133. doi:10.3390/rs8020133
Ottesen, E.A.
, 2016. Probing the living ocean with ecogenomic sensors. Current Opinion in Microbiology 31, 132–139. doi:10.1016/j.mib.2016.03.012
Packer, L.
, Gibbs, J.
, Sheffield, C.
, Hanner, R.
, 2009. DNA barcoding and the mediocrity of morphology. Molecular Ecology Resources 9 Suppl s1, 42–50. doi:10.1111/j.1755-0998.2009.02631.x
Pfrender, M.E.
, Hawkins, C.P.
, Bagley, M.J.
, Courtney, G.W.
, Creutzburg, B.R.
, Epler, J.H.
, Fend, S.
, Ferrington, L.C.
, Hartwell, P.L.
, Jackson, S.
, Larsen, D.P.
, Levesque, C.A.
, Morse, J.C.
, Petersen, M.G.
, Ruiter, D.
, 2010. Assessing macroinvertebrate biodiversity in freshwater ecosystems: Advances and challenges in DNA-based approaches. The Quarterly Review of Biology 85. doi:10.1086/655118
Puncher, G.N.
, Alemany, F.
, Arrizabalaga, H.
, Cariani, A.
, Tinti, F.
, 2015. Misidentification of bluefin tuna larvae: a call for caution and taxonomic reform. Reviews in Fish Biology and Fisheries 25, 485–502. doi:10.1007/s11160-015-9390-1
Rees, H.C.
, Maddison, B.C.
, Middleditch, D.J.
, Patmore, J.R.M.
, Gough, K.C.
, Crispo, E.
, 2014. The detection of aquatic animal species using environmental DNA - a review of eDNA as a survey tool in ecology. Journal of Applied Ecology 51, 1450–1459. doi:10.1111/1365-2664.12306
Rees, H.C.
, Baker, C.A.
, Gardner, D.S.
, Maddison, B.C.
, Gough, K.C.
, 2017. The detection of great crested newts year round via environmental DNA analysis. BMC Research Notes 10, 327. doi:10.1186/s13104-017-2657-y
Shaper, D.
, 2009. Chicago Canal Flooded With Toxin To Kill Asian Carp, In:
All Things Considered
. National Public Radio, Chicago.
Shaw, J.L.A.
, Weyrich, L.
, Cooper, A.
, 2017. Using environmental (e)DNA sequencing for aquatic biodiversity surveys: a beginner’s guide. Marine and Freshwater Research 68, 20. doi:10.1071/MF15361
Steenweg, R.
, Hebblewhite, M.
, Kays, R.
, Ahumada, J.
, Fisher, J.T.
, Burton, C.
, Townsend, S.E.
, Carbone, C.
, Rowcliffe, J.M.
, Whittington, J.
, Brodie, J.
, Royle, J.A.
, Switalski, A.
, Clevenger, A.P.
, Heim, N.
, Rich, L.N.
, 2017. Scaling-up camera traps: monitoring the planet's biodiversity with networks of remote sensors. Frontiers in Ecology and the Environment 15, 26–34. doi:10.1002/fee.1448
Stribling, J.B.
, 2006. Environmental protection using DNA barcodes or taxa? BioScience 565, 878–879. doi:10.1641/0006-3568(2006)56[878:EPUDBO2.0.CO;2]
Stribling, J.B.
, Pavlik, K.L.
, Holdsworth, S.M.
, Leppo, E.W.
, 2008. Data quality, performance, and uncertainty in taxonomic identification for biological assessments. Journal of the North American Benthological Society 27, 906–919. doi:10.1899/07-175.1
Venier, L.A.
, Mazerolle, M.J.
, Rodgers, A.
, McIlwrick, K.A.
, Holmes, S.
, Thompson, D.
, 2017. Comparison of semiautomated bird song recognition with manual detection of recorded bird song samples. Avian Conservation and Ecology 12, 2. doi:10.5751/ACE-01029-120202
Wearn, O.R.
, Glover-Kapfer, P.
, 2019. Snap happy: camera traps are an effective sampling tool when compared with alternative methods. Royal Society Open Science 6, 181748. doi:10.1098/rsos.181748
Xiong, W.
, Li, H.
, Zhan, A.
, 2016. Early detection of invasive species in marine ecosystems using high-throughput sequencing: technical challenges and possible solutions. Marine Biology 163. doi:10.1007/s00227-016-2911-1
Published
Issue
Section
License
Manuscripts must be original. They must not be published or be under consideration for publication elsewhere, in whole or in part. It is required that the lead author of accepted papers complete and sign the MSU Press AEHM Author Publishing Agreement and provide it to the publisher upon acceptance.