Nutritive effect of dust on microbial biodiversity and productivity of the Arabian Gulf

Authors

  • Mohammad A. A. Al-Najjar Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
  • Christopher Munday Current address: Lawson Health Research Institute and University of Western Ontario, London, Canada
  • Artur Fink Microsensor research group, Max-Planck Institute for Marine Microbiology, Bremen, Germany
  • Mohamed A.R. Abdel-Moati Environmental Assessment Department, Ministry of Municipality and Environment, Doha, Qatar
  • Waleed Hamza Biology Department, Faculty of Science, UAE University, Al-Ain, UAE
  • Laura Korte NIOZ – Royal Netherlands Institute for Sea Research, Department of Ocean Systems and Utrecht University, Texel, the Netherlands
  • Jan-Berend Stuut NIOZ – Royal Netherlands Institute for Sea Research, Department of Ocean Systems and Utrecht University, Texel, the Netherlands
  • Ibrahim S. Al-Ansari Environmental Sciences Center, University of Qatar, Doha 2713, State of Qatar
  • Ibrahim Al-Maslamani Environmental Sciences Center, University of Qatar, Doha 2713, State of Qatar
  • Dirk de Beer Microsensor research group, Max-Planck Institute for Marine Microbiology, Bremen, Germany

Keywords:

dust, Arabian Gulf productivity, microbial loops

Abstract

The Arabian Gulf is exposed to intensive dust storms during summer until early winter. We investigated the nutritive effect of the dust on microbial biodiversity of the water column and the productivity of the Gulf. We collected samples from three sites in a transect perpendicular to the shore in March (before the strong dust storms) and in October (after the dust season) in 2013. At the three sites, we sampled the water column at three depths, and see-floor sediments using a HAPS corer. We also sampled the sand dunes that are the source of the dust. We analyzed the samples for pigments, microbial community composition using a 16S rRNA analysis, and nutrients. Our results showed that species richness and biodiversity were higher in October than in March. The relative abundances of key-player microorganisms were strongly pronounced in October. We assume that the dust rapidly sinks to the seafloor where the nutrients Fe and P are liberated through iron reduction. Assuming that all phosphate diffusing from the seafloor originates from the dust particles after deposition, we estimated a contribution of minimum 30,000 tons of fish produced every year in the Gulf. We found no close temporal coupling between dust storms and productivity. This is because nutrient liberation from the seafloor is slow and its transport from the seafloor to the photic zone by circulation processes is irregular. This study highlights the importance of dust as a source of nutrients in the Gulf ecosystem.

References

Ai, N., Polenske, K.R., 2008. Socioeconomic impact analysis of yellow-dust storms: An approach and case study for Beijing. Economic Systems Research 20(2), 187–203. doi:10.1080/09535310802075364

Al-Dousari, A., Doronzo, D., Ahmed, M., 2017. Types, indications and impact evaluation of sand and dust storms trajectories in the Arabian Gulf. Sustainability 9(9), 1526. doi:10.3390/su9091526

Al-Ghadban, A.N., Jacob, P.G., Abdali, F., 1994. Total organic carbon in the sediments of the Arabian Gulf and need for biological productivity investigations. Marine Pollution Bulletin 28(6), 356–362. doi:10.1016/0025-326X(94)90272-0

Al-Hemoud, A., Al-Sudairawi, M., Neelamanai, S., Naseeb, A., Behbehani, W., 2017. Socioeconomic effect of dust storms in Kuwait. Arabian Journal of Geosciences 10(1), 18. doi:10.1007/s12517-016-2816-9

Al Mahdi, N., Al Baharna, N.S., Zaki, F.F., 1992. Assessment of solar radiation models for the Gulf Arabian countries. Renewable Energy 2(1), 65–71. doi:10.1016/0960-1481(92)90061-7

Al-Najjar, M.A.A., Ramette, A., Kühl, M., Hamza, W., Klatt, J.M., Polerecky, L., 2014. Spatial patterns and links between microbial community composition and function in cyanobacterial mats. Frontiers in Microbiology 5(406). doi:10.3389/fmicb.2014.00406

Al-Said, T., Madhusoodhanan, R., Pokavanich, T., Al-Yamani, F., Kedila, R., Al-Ghunaim, A., Al-Hashem, A., 2018. Environmental characterization of a semiarid hyper saline system based on dissolved trace metal-macronutrient synergy: A multivariate spatio-temporal approach. Marine Pollution Bulletin 129(2), 846–858. doi:10.1016/j.marpolbul.2017.10.009

Al-Thani, R., Al-Najjar, M.A., Al-Raei, A.M., Ferdelman, T., Thang, N.M., Al Shaikh, I., Al-Ansi, M., de Beer, D., 2014. Community Structure and Activity of a Highly Dynamic and Nutrient-Limited Hypersaline Microbial Mat in Um Alhool Sabkha, Qatar. PLoS ONE 9(3), e92405. doi:10.1371/journal.pone.0092405

Alobaidi, M., Almazroui, M., Mashat, A., Jones, P.D., 2017. Arabian Peninsula wet season dust storm distribution: regionalization and trends analysis (1983–2013). International Journal of Climatology 37(3), 1356–1373. doi:10.1002/joc.4782

Alosairi, Y., Imberger, J., Falconer, R.A., 2011. Mixing and flushing in the Persian Gulf (Arabian Gulf). Journal of Geophysical Research: Oceans 116(C3). doi:10.1029/2010JC006769

Buchan, A., LeCleir, G.R., Gulvik, C.A., González, J.M., 2014. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nature Reviews Microbiology 12, 686. doi:10.1038/nrmicro3326

Dowd, S., Sun, Y., Wolcott, R., Domingo, A., Carroll, J., 2008. Bacterial tagencoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathogens And Disease 5, 459–472. doi:10.1089/fpd.2008.0107

Elser, J.J., Bracken, M.E., Cleland, E.E., Gruner, D.S., Harpole, W.S., Hillebrand, H., Ngai, J.T., Seabloom, E.W., Shurin, J.B., Smith, J.E., 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology letters 10(12), 1135–1142. doi:10.1111/j.1461-0248.2007.01113.x

Engel, A., Thoms, S., Riebesell, U., Rochelle-Newall, E., Zondervan, I., 2004. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 428(6986), 929. doi:10.1038/nature02453

Fairbridge, R.W., 1982. Submarine springs. Beaches and Coastal Geology, 799–800. Springer US, Boston, MA.

Farzin, M., A.N. Samani, S. Feiznia, G.A. Kazemi and I. Golzar, 2017. Comparison of SGD rate between northern-southern coastlines of the Persian Gulf using RS. European Water Resources Association (57), 497–503.

Fernández-Gomez, B., Richter, M., Schüler, M., Pinhassi, J., Acinas, S.G., González, J.M., Pedros-Alio, C., 2013. Ecology of marine Bacteroidetes: a comparative genomics approach. The ISME Journal 7(5), 1026. doi:10.1038/ismej.2012.169

Foda, M.A., Khalaf, F.I., Al-Kadi, A.S., 1985. Estimation of dust fallout rates in the northern Arabian Gulf. Sedimentology 32(4), 595–603. doi:10.1111/j.1365-3091.1985.tb00473.x

Geider, R.J., La Roche, J., 2002. Redfield revisited: variability of C [ratio] N [ratio] P in marine microalgae and its biochemical basis. European Journal of Phycology 37(1), 1–17. doi:10.1017/S0967026201003456

Goudie, A.S., Middleton, N.J., 2001. Saharan dust storms: nature and consequences. Earth-Science Reviews 56(1), 179–204. doi:10.1016/S0012-8252(01)00067-8

Graca, B., Witek, Z., Burska, D., Białkowska, I., Łukawska-Matuszewska, K., Bolałek, J., 2006. Pore water phosphate and ammonia below the permanent halocline in the south-eastern Baltic Sea and their benthic fluxes under anoxic conditions. Journal of Marine Systems 63(3), 141–154. doi:10.1016/j.jmarsys.2006.06.003

Grasshoff, K., Ehrhardt, M., Kremling, K., Almgren, T., 1983. Methods of Seawater Analysis 2nd rev. and extended edn Verlag Chemie. Weinheim.

Griffin, D.W., 2007. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical microbiology reviews 20(3), 459–477. doi:10.1128/CMR.00039-06

Griffin, D.W., Kellogg C.A., Garrison V.H., and Shinn E.A., 2002. The Global Transport of Dust: An Intercontinental river of dust, microorganisms and toxicchemicals flows through the Earth's atmosphere. American Scientist 90 (3), 228–235. doi:10.1511/2002.3.228

Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. Paleontological Statistics Software: Package for Education and Data Analysis. Palaeontologia Electronica (4).

Hamza, W., 2008. Nutritive contribution of Sahara dust to aquatic environment productivity: A laboratory experimental approach SIL Proceedings, 1922-2010 30(1), 82–86. doi:10.1080/03680770.2008.11902089

Hamza, W., Enan, M.R., Al-Hassini, H., Stuut, J.-B., de-Beer, D., 2011. Dust storms over the Arabian Gulf: a possible indicator of climate changes consequences AU. Aquatic Ecosystem Health & Management 14(3), 260–268. doi:10.1080/14634988.2011.601274

Hassler, C.S., Schoemann, V., Nichols, C.M., Butler, E.C., Boyd, P.W., 2011. Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. Proceedings of the National Academy of Sciences 108(3), 1076–1081. doi:10.1073/pnas.1010963108

Hochberg, E.J., Atkinson, M.J., 2008. Coral reef benthic productivity based on optical absorptance and light-use efficiency. Coral Reefs 27(1), 49–59. doi:10.1007/s00338-007-0289-8

Jilbert, T., Slomp, C.P., 2013. Iron and manganese shuttles control the formation of authigenic phosphorus minerals in the euxinic basins of the Baltic Sea. Geochimica Et Cosmochimica Acta 107, 155–169. doi:10.1016/j.gca.2013.01.005

Johns, W.E., Yao, F., Olson, D.B., Josey, S.A., Grist, J.P., Smeed, D.A., 2003. Observations of seasonal exchange through the Straits of Hormuz and the inferred heat and freshwater budgets of the Persian Gulf. Journal of Geophysical Research: Oceans 108(C12). doi:10.1029/2003JC001881

Kämpf, J., Sadrinasab, M., 2006. The circulation of the Persian Gulf: a numerical study. Ocean Sci. 2(1), 27–41. doi:10.5194/os-2-27-2006

Kirchman, D.L., 2002. The ecology of Cytophaga–Flavobacteria in aquatic environments. Fems Microbiology Ecology 39(2), 91–100. doi:10.1016/S0168-6496(01)00206-9

Kostka, J.E., Luther, G.W., 1994. Partitioning and speciation of solid phase iron in saltmarsh sediments. Geochimica Et Cosmochimica Acta 58(7), 1701–1710. doi:10.1016/0016-7037(94)90531-2

Ludwig, W., Dumont, E., Meybeck, M., Heussner, S., 2009. River discharges of water and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem changes during past and future decades? Progress in Oceanography 80(3), 199–217. doi:10.1016/j.pocean.2009.02.001

Michael Reynolds, R., 1993. Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—Results from the Mt Mitchell expedition. Marine Pollution Bulletin 27, 35–59. doi:10.1016/0025-326X(93)90007-7

Miller, S.D., Kuciauskas, A.P., Liu, M., Ji, Q., Reid, J.S., Breed, D.W., Walker, A.L., Mandoos, A.A., 2008. Haboob dust storms of the southern Arabian Peninsula. Journal of Geophysical Research: Atmospheres 113(D1). doi:10.1029/2007JD008550

Milligan, A.J., Morel, F.M., 2002. A proton buffering role for silica in diatoms. Science 297(5588), 1848–1850. doi:10.1126/science.1074958

Mills, M.M., Ridame, C., Davey, M., La Roche, J., Geider, R.J., 2004. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429(6989), 292. doi:10.1038/nature02550

Moffitt, C.M., Cajas-Cano, L., 2014. Blue Growth: The 2014 FAO State of World Fisheries and Aquaculture. Fisheries 39(11), 552–553. doi:10.1080/03632415.2014.966265

Monazami Tehrani, G.H., Rosli, H., Sulaiman, A.H., Tavakoly sany, B., Salleh, A., Owfi, F., Savari, A., Khani Jazani, R., Monazami Tehrani, Z.H., 2014. Petroleum hydrocarbon assessment in the wastewaters of petrochemical special economic zone and sediment benchmark calculation of the coastal area - northwest of the Persian Gulf. Iranian Journal of Fisheries Sciences 13(1), 119–134.

Munawar, M., 2009. Protecting and managing the Arabian Gulf: Past, present and future AU - Hamza, Waleed. Aquatic Ecosystem Health & Management 12(4), 429–439. doi:10.1080/14634980903361580

Peeken, I., 1997. Photosynthetic pigment fingerprints as indicators of phytoplankton biomass and development in different water masses of the Southern Ocean during austral spring. Deep Sea Research Part II: Topical Studies in Oceanography 44(1-2), 261–282. doi:10.1016/S0967-0645(96)00077-X

Rao, P.G., Al-Sulaiti, M., Al-Mulla, A.H., 2001. Winter shamals in Qatar, Arabian Gulf. Weather 56, 444–451. doi:10.1002/j.1477-8696.2001.tb06528.x

Sand-Jensen, K., 1997. Broad-Scale Comparison of Photosynthesis in Terrestrial and Aquatic Plant Communities. Oikos 80(1), 203–208. doi:10.2307/3546536

Schloss, P.D., Westcott, S.L., 2011. Assessing and Improving Methods Used in Operational Taxonomic Unit-Based Approaches for 16S rRNA Gene Sequence Analysis. Applied and Environmental Microbiology 77(10), 3219–3226. doi:10.1128/AEM.02810-10

Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B., Thallinger, G.G., Van Horn, D.J., Weber, C.F., 2009. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Applied and Environmental Microbiology 75(23), 7537–7541. doi:10.1128/AEM.01541-09

Sheppard, C., Al-Husiani, M., Al-Jamali, F., Al-Yamani, F., Baldwin, R., Bishop, J., Benzoni, F., Dutrieux, E., Dulvy, N.K., Durvasula, S.R.V., Jones, D.A., Loughland, R., Medio, D., Nithyanandan, M., Pilling, G.M., Polikarpov, I., Price, A.R.G., Purkis, S., Riegl, B., Saburova, M., Namin, K.S., Taylor, O., Wilson, S., Zainal, K., 2010. The Gulf: A young sea in decline. Marine Pollution Bulletin 60(1), 13–38. doi:10.1016/j.marpolbul.2009.10.017

Sissakian, V., Al-Ansari, N., Knutsson, S., 2013. Sand and dust storm events in Iraq. Journal of Natural Science 5(10), 1084–1094. doi:10.4236/ns.2013.510133

Van der Does, M., Korte, L. F., Munday, C. I., Brummer, G.-J. & Stuut, J.-B. W., 2016. Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic. Atmospheric Chemistry and Physics (16), 13697–13710. doi:10.5194/acp-16-13697-2016

Viollier, E., Inglett, P., Hunter, K., Roychoudhury, A., Van Cappellen, P., 2000. The ferrozine method revisited: Fe (II)/Fe (III) determination in natural waters. Applied Geochemistry 6(15), 785–790. doi:10.1016/S0883-2927(99)00097-9

Wright, S.W., Jeffrey, S.W., Mantoura, R.F.C., Llewellyn, C.A., Bjornland, T., Repeta, D., Welschmeyer, N., 1991. Improved HPLC method for the analysis of chlorophylls and carotenoids from marine-phytoplankton. Marine Ecology-Progress Series 77(2-3), 183–196. doi:10.3354/meps077183

Published

2020-04-02