Coral bioerosion on the marginal reefs of northeastern Arabia

Authors

  • Noura Al-Mansoori Center for Genomics and Systems Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
  • Dain McParland Center for Genomics and Systems Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
  • Emily Howells Center for Genomics and Systems Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
  • Andrew Bauman Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore
  • John A. Burt Center for Genomics and Systems Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates

Keywords:

coral reef, Persian Gulf, Arabian Gulf, Sea of Oman

Abstract

The maintenance of coral reef framework results from a balance between skeletal accretion and bioerosion, and this balance can be disrupted by environmental stress and disturbance. Coral reefs in northeastern Arabia exist in extreme environmental conditions and have experienced severe disturbances in recent years. This study assessed the intensity of macrobioerosion in two regionally common species, Platygyra daedalea and Cyphastrea microphthalma, at three sites within the southern Persian/Arabian Gulf and at one site in the Sea of Oman. On average, bioeroders removed 9.2 ± 1.6% of the skeletal surface area in P. daedalea and 26.4 ± 1.6% in C. microphthalma, with variation between species attributed to differences in colony morphology. Bioerosion intensity varied among sites in each species. Within the southern Arabian Gulf, both P. daedalea and C. microphthalma showed the highest bioerosion intensity at Delma, in the western region, compared with that of Saadiyat or Ras Ghanada to the east, with the elevated bioerosion at Delma consistent with a history of more extreme environmental conditions and bleaching-related disturbances. The highest bioerosion in P. daedalea occurred at Fujairah in the Sea of Oman, and this site was amongst the highest in C. microphthalma. Although this site is characterized by more benign environmental conditions, reefs in this area experienced mass coral mortality due to anoxia during a large-scale harmful algal bloom in 2008/9 and the high bioerosion in Fujairah likely represents a long-term signature of this disturbance. The intensity of macrobioerosion observed here is high compared with other regions, suggesting that that chronic exposure to long-term environmental stress and a history of disturbance may lead enhanced loss of reef framework.

References

Allemand, D., Tambutté, É., Zoccola, D., Tambutté, S., 2011. Coral Calcification, Cells to Reefs. In: Z. Dubinsky, N. Stambler (Eds.), Coral Reefs: An Ecosystem in Transition, pp. 119–150. Springer Netherlands, Dordrecht.

Bauman, A.G., Burt, J.A., Feary, D.A., Marquis, E., Usseglio, P., 2010. Tropical harmful algal blooms: An emerging threat to coral reef communities? Marine pollution bulletin 60, 2117–2122. doi:10.1016/j.marpolbul.2010.08.015

Bauman, A.G., Feary, D.A., Heron, S.F., Pratchett, M.S., Burt, J.A., 2013. Multiple environmental factors influence the spatial distribution and structure of reef communities in the northeastern Arabian Peninsula. Marine Pollution Bulletin 72, 302–312. doi:10.1016/j.marpolbul.2012.10.013

Bento, R., Hoey, A.S., Bauman, A.G., Feary, D.A., Burt, J.A., 2016. The implications of recurrent disturbances within the world's hottest coral reef. Mar. Pollut. Bull. 105, 466–472. doi:10.1016/j.marpolbul.2015.10.006

Burt, J., 2014. The environmental costs of coastal urbanization in the Arabian Gulf. City: analysis of urban trends, culture, theory, policy, action 18, 760-770. doi:10.1080/13604813.2014.962889

Burt, J.A., Bartholomew, A., 2019. Towards more sustainable coastal development in the Arabian Gulf: Opportunities for ecological engineering in an urbanized seascape. Mar. Pollut. Bull. 142, 93–102. doi:10.1016/j.marpolbul.2019.03.024

Burt, J., Bartholomew, A., Usseglio, P., 2008. Recovery of corals a decade after bleaching in Dubai, United Arab Emirates. Mar. Biol. 154, 27–36. doi:10.1007/s00227-007-0892-9

Burt, J., Al-Harthi, S., Al-Cibahy, A., 2011. Long-term impacts of coral bleaching events on the world’s warmest reefs. Marine Environmental Research 72, 225–229. doi:10.1016/j.marenvres.2011.08.005

Burt, J., Coles, S., Van Lavieren, H., Taylor, O., Looker, E., Samimi-Namin, K., 2016. Oman's coral reefs: A unique ecosystem challenged by natural and man-related stresses and in need of conservation. Marine pollution bulletin 105, 498–506. doi:10.1016/j.marpolbul.2015.11.010

Burt, J.A., Paparella, F., Al-Mansoori, N., Al-Mansoori, A., Al-Jailani, H., 2019. Causes and consequences of the 2017 coral bleaching event in the southern Persian/Arabian Gulf. Coral Reefs38-019-01767-y. doi:10.1007/s003

Burt, J.A., Camp, E.F., Enochs, I.C., Johansen, J.L., Morgan, K.M., Riegl, B., Hoey, A.S., 2020. Insights from extreme coral reefs in a changing world. Coral Reefs 39, 495–507. doi:10.1007/s00338-020-01966-y

Carballo, J.L., Bautista, E., Nava, H., Cruz‐Barraza, J.A., Chávez, J., 2013. Boring sponges, an increasing threat for coral reefs affected by bleaching events. Ecology and Evolution 3, 872–886. doi:10.1002/ece3.452

Chen, T., Li, S., Yu, K., 2013. Macrobioerosion in Porites corals in subtropical northern South China Sea: a limiting factor for high-latitude reef framework development. Coral Reefs 32, 101–108. doi:10.1007/s00338-012-0946-4

Coles, S., 1997. Reef corals occurring in a highly fluctuating temperature environment at Fahal Island, Gulf of Oman (Indian Ocean). Coral Reefs 16, 269–272. doi:10.1007/s003380050084

Connell, J.H., 1973. Population ecology of reef-building corals, in: Jones, O., Endean, R. (Eds.), Biology and geology of coral reefs. Academic Press, London, pp. 205–245.

Foster, K.A., Foster, G., Tourenq, C., Shuriqi, M.K., 2011. Shifts in coral community structures following cyclone and red tide disturbances within the Gulf of Oman (United Arab Emirates). Marine Biology 158, 955–968. doi:10.1007/s00227-010-1622-2

Foster, K., Foster, G., Al-Cibahy, A.S., Al-Harthi, S., Purkis, S.J., Riegl, B.M., 2012. Environmental Setting and Temporal Trends in Southeastern Gulf Coral Communities. In: B.M. Riegl, S.J. Purkis (Eds.), Coral Reefs of the Gulf: Adaptation to Climatic Extremes, pp. 51–70. Springer Netherlands, Dordrecht.

George, D., John, D., 2000. The status of coral reefs and associated macroalgae in Abu Dhabi (UAE) after recent coral bleaching events., Proceedings of the International Symposium on the Extent and Impact of Coral Bleaching in the Arabian Region, National Commission for Wildlife Conservation and Development, Riyadh, Saudi Arabia, Riyadh, Saudi Arabia. National Commission for Wildlife Conservation and Development, Riyadh, Saudi Arabia, pp. 184-201.

Glynn, P.W., 1996. Coral reef bleaching: facts, hypotheses and implications. Global Change Biology 2, 495–509. doi:10.1111/j.1365-2486.1996.tb00063.x

Glynn, P.W., Manzello, D.P., 2015. Bioerosion and Coral Reef Growth: A Dynamic Balance. In: C. Birkeland (Ed.), Coral Reefs in the Anthropocene, pp. 67–97. Springer Netherlands, Dordrecht.

Grigg, R.W., Dollar, S., 1990. Natural and anthropogenic disturbance on coral reefs. In: Z. Dubinsky (Ed.), Ecosystems of the World, pp 439–452. Elsevier, Amsterdam.

Grizzle, R.E., Ward, K.M., AlShihi, R.M., Burt, J.A., 2016. Current status of coral reefs in the United Arab Emirates: Distribution, extent, and community structure with implications for management. Marine Pollution Bulletin 105, 515–523. doi:10.1016/j.marpolbul.2015.10.005

Hernández-Ballesteros, L.M., Elizalde-Rendón, E.M., Carballo, J.L., Carricart-Ganivet, J., 2013. Sponge bioerosion on reef-building corals: Dependent on the environment or on skeletal density? Journal of Experimental Marine Biology and Ecology 441, 23–27. doi:10.1016/j.jembe.2013.01.016

Hidaka, M., 2016. Life History and Stress Response of Scleractinian Corals. In: H. Kayanne (Ed.), Coral Reef Science: Strategy for Ecosystem Symbiosis and Coexistence with Humans under Multiple Stresses, pp. 1–24. Springer Japan, Tokyo.

Highsmith, R.C., 1981a. Coral Bioerosion at Enewetak: Agents and Dynamics. Internationale Revue der gesamten Hydrobiologie und Hydrographie 66, 335–375. doi:10.1002/iroh.19810660307

Highsmith, R.C., 1981b. Coral bioerosion: damage relative to skeletal density. The American Naturalist 117, 193–198. doi:10.1086/283698

Highsmith, R.C., Lueptow, R.L., Schonberg, S.C., 1983. Growth and bioerosion of three massive corals on the Belize barrier reef. Marine Ecology Progress Series 13, 261–271. doi:10.3354/meps013261

Holmes, K.E., Edinger, E.N., Hariyadi, Limmon, G.V., Risk, M.J., 2000. Bioerosion of Live Massive Corals and Branching Coral Rubble on Indonesian Coral Reefs. Mar. Pollut. Bull. 40, 606–617.

Howells, E.J., Dunshea, G., McParland, D., Vaughan, G.O., Heron, S.F., Pratchett, M.S., Burt, J.A., Bauman, A.G., 2018. Species-specific coral calcification responses to the extreme environment of the southern Persian Gulf. Frontiers in Marine Science 5. doi:10.3389/fmars.2018.00056

Hughes, T.P., Kerry, J.T., Baird, A.H., Connolly, S.R., Dietzel, A., Eakin, C.M., Heron, S.F., Hoey, A.S., Hoogenboom, M.O., Liu, G., 2018. Global warming transforms coral reef assemblages. Nature 556, 492. doi:10.1038/s41586-018-0041-2

Jafari, M.A., Seyfabadi, J., Shokri, M.R., 2016. Internal bioerosion in dead and live hard corals in intertidal zone of Hormuz Island (Persian Gulf). Mar. Pollut. Bull. 105, 586–592. doi:10.1016/j.marpolbul.2015.11.048

Jokiel, P.L., Jury, C.P., Kuffner, I.B., 2016. Coral Calcification and Ocean Acidification, in: Hubbard, D.K., Rogers, C.S., Lipps, J.H., Stanley, J.G.D. (Eds.), Coral Reefs at the Crossroads. Springer Netherlands, Dordrecht, pp. 7–45.

Neumann, A.C., 1966. Observations on coastal erosion in bermuda and measurements of the boring rate of the sponge, cliona lampa1,2. Limnology and Oceanography 11, 92–108. doi:10.4319/lo.1966.11.1.0092

Pandolfi, J.M., Greenstein, B.J., 1997. Taphonomic alteration of reef corals: effects of reef environment and coral growth form. I. The Great Barrier Reef. Palaios 12, 27–42. doi:10.2307/3515292

Paparella, F., Xu, C., Vaughan, G.O., Burt, J.A., 2019. Coral Bleaching in the Persian/Arabian Gulf Is Modulated by Summer Winds. Frontiers in Marine Science 6. doi:10.3389/fmars.2019.00205

Perry, C., 1998. Macroborers within coral framework at Discovery Bay, north Jamaica: species distribution and abundance, and effects on coral preservation. Coral Reefs 17, 277–287. doi:10.1007/s003380050129

Perry, C.T., Harborne, A.R., 2016. Bioerosion on Modern Reefs: Impacts and Responses Under Changing Ecological and Environmental Conditions, in: Hubbard, K.D., Rogers, S.C., Lipps, H.J., Stanley, J.D.G. (Eds.), Coral Reefs at the Crossroads. Springer Netherlands, Dordrecht, pp. 69–101.

Perry, C.T., Kench, P.S., O’Leary, M., Morgan, K., Januchowski-Hartley, F., 2015. Linking reef ecology to island building: Parrotfish identified as major producers of island-building sediment in the Maldives. Geology 43, 503–506. doi:10.1130/G36623.1

Riegl, B., Johnston, M., Purkis, S., Howells, E., Burt, J., Steiner, S.C., Sheppard, C.R., Bauman, A., 2018. Population collapse dynamics in Acropora downingi, an Arabian/Persian Gulf ecosystem‐engineering coral, linked to rising temperature. Global Change Biology 24, 2447–2462. doi:10.1111/gcb.14114

Risk, M., Sammarco, P., Edinger, E., 1995. Bioerosion in Acropora across the continental shelf of the Great Barrier Reef. Coral Reefs 14, 79–86. doi:10.1007/BF00303427

Rützler, K., 2002. Impact of crustose clionid sponges on Caribbean reef corals. Acta Geol. Hisp. 37, 61–72.

Samimi-Namin, K., Risk, M., Hoeksema, B., Zohari, Z., Rezai, H., 2010. Coral mortality and serpulid infestations associated with red tide, in the Persian Gulf. Coral Reefs 29, 509–509. doi:10.1007/s00338-010-0601-x

Sammarco, P.W., Risk, M.J., 1990. Large-scale patterns in internal bioerosion of Porites: cross continental shelf trends on the Great Barrier Reef. Marine Ecology Progress Series 59, 145–156. doi:10.3354/meps059145

Schoenberg, C.H., 2002. Substrate effects on the bioeroding demosponge Cliona orientalis. 1. Bioerosion rates. Marine Ecology 23, 313–326.

Schönberg, C., Wilkinson, C., 2001. Induced colonization of corals by a clionid bioeroding sponge. Coral Reefs 20, 69–76. doi:10.1007/s003380100143

Sheppard, C., Loughland, R., 2002. Coral mortality and recovery in response to increasing temperature in the southern Arabian Gulf. Aquatic Ecosystem Health & Management 5, 395–402. doi:10.1080/14634980290002020

Sheppard, C., Salm, R., 1988. Reef and coral communities of Oman, with a description of a new coral species (Order Scleractinia, genus Acanthastrea). Journal of Natural History 22, 263–279. doi:10.1080/00222938800770201

Sheppard, C.R., Sheppard, A., 1991. Corals and coral communities of Arabia. Fauna of Arabia 12, 3–170.

Sheppard, C., Price, A., Roberts, C., 1992. Marine ecology of the Arabian region: patterns and processes in extreme tropical environments. Academic Press, Toronto.

Sheppard, C., Al-Husiani, M., Al-Jamali, F., Al-Yamani, F., Baldwin, R., Bishop, J., Benzoni, F., Dutrieux, E., Dulvy, N.K., Durvasula, S.R.V., Jones, D.A., Loughland, R., Medio, D., Nithyanandan, M., Pilling, G.M., Polikarpov, I., Price, A.R.G., Purkis, S., Riegl, B., Saburova, M., Samimi-Namin, K., Taylor, O., Wilson, S., Zainal, K., 2010. The Gulf: A young sea in decline. Marine Pollution Bulletin 60, 13–38. doi:10.1016/j.marpolbul.2009.10.017

Spencer, T., Viles, H., 2002. Bioconstruction, bioerosion and disturbance on tropical coasts: coral reefs and rocky limestone shores. Geomorphology 48, 23–50. doi:10.1016/S0169-555X(02)00174-5

Vaughan, G.O., Al-Mansoori, N., Burt, J.A., 2019. Chapter 1-The Arabian Gulf, In: C. Sheppard (Ed.), World Seas: an Environmental Evaluation, Second Edition, pp. 1–23. Academic Press, MA.

Zubia, M., Peyrot-Clausade, M., 2001. Internal bioerosion of Acropora formosa in Réunion (Indian Ocean): microborer and macroborer activities. Oceanologica Acta 24, 251–262. doi:10.1016/S0399-1784(01)01144-6

Published

2020-04-02