Removal of Anabaena sp. bloom and microcystin-LR by coculturing with Mucor rouxii pellets

Authors

  • Ayad M.J. Al-Mamoori University of Babylon, College of Science, Biology Dept. Baghdad, Iraq
  • Rana H. H. Al-Shammari Mustansiriyah University, College of Science, Biology Baghdad, Iraq
  • Moayed J.Y. Al-amari University of Babylon, College of Science, Biology Dept. Baghdad, Iraq
  • Maher M. K. Al-Juboori University of Babylon, College of Science, Biology Dept. Baghdad, Iraq

Keywords:

biocontrol, harmful algae, coculture, fungal pellets

Abstract

In this study, biocontrol of harmful effect of cyanobacterial blooms and their toxins by “flocculation-biosorption” was achieved. Five fungal species were isolated from decayed cyanobacterial bloom which are: Aspergillus fumigatus, A. niger, Penicillium, Trichoderma ressei and Mucor rouxii. We chose the last species’ pellets because they are the most stable and cocultured with Anabeana sp. (1:5 fungal: cyanobacteria ratio) of dry weight, Harvest Efficacy HE% by fungal pellets started after 12h of co-culturing about (4%) and almost complete harvesting after 48h with (98%), then we add 0.1g of Magnetite nano Fe3o4 to facilitate removing cyanobacterial blooms. Microcystin-LR extracted from Anabaena sp. were purified and collected by preparative high-performance liquid chromatography (HPLC) was 75.1 (µg ml-1), M. rouxii pellet absorbed about 85% of Microcystin-LR after 72 h of incubation at 25 °C.

References

Al-Aarajy, M. J., Al-Sultan, E.Y.A., 2008. Isolation and purification of Hepatotoxin (Microcystin-LR) from some Blue–green algae of sweage water in Basrah. Marsh Bulletin 3(1), 1–16.

Adamovsky, O., 2010. Bioaccumulation and effects of cyanotoxins in the aquatic environment. Environmental Chemistry. 6(4), 223–227.

Balsano, E., Esterhuizen-Londt, M., Hoque, E., Pflugmacher, S., 2016. Fungal pellets as potential tools to control water pollution: Strategic microcystin-LR uptake by Mucor hiemalis approach for the pelletization and subsequent. J. App. Biol. Biotech., 4(4), 031–041. doi:10.7324/JABB.2016.40403

Barnett, H.L. and Hunter, B. B., 1972. Illustrated genera of imperfect fungi. In: H.L. Barnett (Ed.), Illustrated Genera of Imperfect Fungi. 2nd. Ed., pp. 550. Burgess publishing Co., MN.

Bhattacharya, A. Mathur, M., Kumar, P. Kumar, S. Prajapat, Malik, A., 2017. A rapid method for fungal assisted algal flocculation: Critical parameters& mechanism insights. Algal Research, 21, 42–51. doi:10.1016/j.algal.2016.10.022

Codd, GA., Lindsay, J., Young, FM., 2005. Harmful cyanobacteria: from mass mortalities to management measures. In: J. Huisman, H. C. P. Matthijs, P.M. Vissler (Eds.), Harmful Cyanobacteria, pp. 23. Springer, Dordrecht.

Coral, L. A., 2013. Oxidation of Microcystis aeruginosa and Anabaena flosaquae by ozone: impacts on cell integrity and chlorination by-product formation. Water Res., 47, 2983–2994. doi:10.1016/j.watres.2013.03.012

Desikachary, T.V., 1959. Cyanophyta. New Delhi: Indian Council of Agricultural Research. pp. [i]-x, [1]-686, pls 1–139.

Falconer, I.R., 1998. Algal toxin and human health. In: J. Hrubec (Ed.), The handbook of environmental chemistry. Quality and treatment of Drinking water II, Part c, Vol. 5., pp. 53–82. Springer- Verlag, Berlin

Gutiérrez-Praena, D.Á., Jos, S. Pichardo, I. M. Moreno, Cameán, A. M., 2014. Presence and bioaccumulation of microcystins and cylindrospermopsin in food and the effectiveness of some cooking techniques at decreasing their concentrations: A review,‖ Food and Chemical Toxicolo., 53, 39–150.

Hadjoudja, S., Deluchat, V., Baudu, M., 2010. Cell surface characterization of Microcystis aeruginosa and Chlorella vulgaris

. J. Colloid Interface Sci., 342, 293–299. doi:10.1016/j.jcis.2009.10.078

Hoque, E., 2003. Process for the degradation of xenobiotics by fungi with monooxygenase/dioxygenase activity in the presence of fungi with glutathione S-transferase activity. DE10125365C2.

Jäger, C.G., Hagemann, J., Borchardt, D., 2017. Can nutrient pathways and biotic interactions control eutrophication in riverine ecosystems? Evidence from a model driven mesocosm experiment. Water Res. 115, 162–171. doi:10.1016/j.watres.2017.02.062

Lawton, L.A., Edwards, C., Codd, G.A., 2001. Extraction and high performance liquid chromatographic method for the determination of microcystins in raw and treated water. Analyst 119, 1525–1530. doi:10.1039/an9941901525

Liao, W., Liu, Y., Chen, S.L., 2007. Studying pellet formation of a filamentous fungus Rhizopus oryzae to enhance organic acid production. Appl. Biochem. Biotechnol. 137, 689–701.

Lindholm, T., Meriluoto, J. A. O., 2004.Recurrent depth maxima of the hepatotoxic cyanobacterium Oscillatoria agardhii

. Can. J. Fish. Aquat. Sci., 48, 1629–1634. doi:10.1139/f91-193

Liu, T., Wang, J., Hu, Q., Cheng, P., Ji, B., Liu, J., Chen, Y., Zhan., Gao, L., Ji, C., Wang, H., 2013. Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour. Technol. 127, 216–222. doi:10.1016/j.biortech.2012.09.100

Liu, Y., Liao, W., Chen, S., 2008. Co-production of lactic acid and chitin using a pelletized filamentous fungus Rhizopus oryzae cultured on cull potatoes and glucose. J. Appl. Microbiol., 105, 1521–1528. doi:10.1111/j.1365-2672.2008.03913.x

Marten, J.C., Vasconcelos, V., 2011. Differential protein expression in Corbicula fluminea upon exposure to a Microcystis aeruginosa toxic strain. Toxicon. 53, 409–416. doi:10.1016/j.toxicon.2008.12.022

Mohamed, Z.A., Hashem, M., Alamri, S.A., 2014. Growth inhibition of the cyanobacterium Microcystis aeruginosa and degradation of its microcystin toxins by the fungus Trichoderma citrinoviride

. Toxicon, 86, 51–58. doi:10.1016/j.toxicon.2014.05.008

Muradov, N., Mohamed, T., Miranda, A. F., Wrede, D., Kadali, K., Gujar, A., Stevenson, T., Ball, A. S., Mouradov, A., 2015. Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production. Biotechnol. Biofuels. 8, 24. doi:10.1186/s13068-015-0210-6

Namikoshi, M., Choi B.W., Sun, F.K., Rinehart L., 1993. Chemical characterization and toxicity of Dihydro derivatives of Nodularin and Microcystin-LR, potent Cyanobacterial Cyclic peptide Hepatotoxins. Chem. Res. Toxicol. 6,151–158. doi:10.1021/tx00032a003

Oh, H.M., Lee, S.J., Park, M.H., Kim, H.S., Kim, H.C., Yoon, J.H., Kwon, G.S., Yoon, B.D., 2001. Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol. Lett., 23 (15), 1229–1234. doi:10.1023/A:1010577319771

Olaizola, M., 2003. Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol. Eng., 20, 459–466. doi:10.1016/S1389-0344(03)00076-5

Purdie, E. L., Metcalf, J. S. Kashmiri, S ., Godd, G. A., 2009. Toxicity of the cyanobacterial neurotoxin β-N-methylamino-L-alanine to three aquatic animals species. Amyotrophic Lateral Sclerosis

, 67–70. doi:10.3109/17482960903273551

Shroff, KA., Vaidya, VK., 2011. Kinetics and equilibrium studies on biosorption of nickel from aqueous solution by dead fungal biomass of Mucor hiemalis

. Chem. Eng. J., 171, 1234–1245. doi:10.1016/j.cej.2011.05.034

Smith, J.L., Haney, J.F., 2006. Food web transfer, accumulation, and depuration of microcystins, a cyanobacterial toxin, in pumpkinseed sunfish (Lepomis gibbosus

). Toxicon., 48, 580–589. doi:10.1016/j.toxicon.2006.07.009

Tredici, M.R., 2004. Mass production of microalgae: photobioreactors. Handbook of microalgae culture: Biotechnology and Applied phycology. Blackwell Science, Oxford.

Vandamme, D., Foubert, I., Muylaert, K., 2013. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol., 31 (4), 233–239. doi:10.1016/j.tibtech.2012.12.005

Xia, C.J., Zhang, J.G., Zhang, W.D., Hu, B., 2011. A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides

. Biotechnology for Biofuels 4. doi:10.1186/1754-6834-4-15

Xiong, W., Tang, Y., Shao, C., Zhao, Y., Jin, B., Huang, T., Miao, Y., Shu, L., Ma, W., Xu, X., Tang, R., 2017. Prevention of cyanobacterial blooms using nanosilica: A biomineralization-inspired strategy, Environ. Sci. Technol. 51, 12717–12726. doi:10.1021/acs.est.7b02985

Zamalloa, C., Sarman O. Gultom, Aravindan Rajendran, Hu, B., 2017. Ionic effects on microalgae harvest via microalgae-fungi co-pelletization. Biocatalysis and Agricultural Biotechnology, 9, 145–155. doi:10.1016/j.bcab.2016.12.007

Zamyadi A., Ho L., Newcombe, G., Bustamante, H., Prevost, M., 2012. Fate of toxic cyanobacterial cells and disinfection by-products formation after chlorination. Water Res. 46, 1524–1535. doi:10.1016/j.watres.2011.06.029

Published

2020-07-02