Investigation of stalk formation, frequency of dividing cells and gene expression in periphyton mats dominated by Didymosphenia geminata

Authors

  • Krista M. Larsen Ecology and Evolutionary Biology Research Cluster, Department of Biological Sciences, University of Calgary 2500 University Drive, NW, Calgary, Alberta, Canada T2N 1N4
  • Leland J. Jackson Ecology and Evolutionary Biology Research Cluster, Department of Biological Sciences, University of Calgary 2500 University Drive, NW, Calgary, Alberta, Canada T2N 1N4
  • Sean M. Rogers Ecology and Evolutionary Biology Research Cluster, Department of Biological Sciences, University of Calgary 2500 University Drive, NW, Calgary, Alberta, Canada T2N 1N4

Keywords:

invasive species, transcripts, algal bloom

Abstract

The diatom Didymosphenia geminata can produce thick benthic mats along river bottoms, possibly in association with soluble reactive phosphorus mat-forming genetic variants, or gene expression associated with environmental variation. We isolated cells collected from mat-forming and non-mat-forming sites in British Columbia and Alberta, Canada and compared soluble reactive phosphorus, frequency of dividing cells and gene expression via RNA sequencing. Frequency of dividing cells and soluble reactive phosphorus were higher at the non-mat-forming site and there was no significant difference in frequency of dividing cells between Alberta and British Columbia sites, with one exception. Sixty-six gene products from reference diatom (Phaeodactylum tricornutum and Thalassiosira pseudonana) and bacterial (Caulobacter crescentus) genomes were expressed only in the mat-forming sample and many were related to phosphorus metabolism. One hundred seventy two genes were expressed only in the non-mat-forming sample and many were related to cell division and silica metabolism. Differential gene expression in the periphyton communities suggests that there might be different periphyton molecular phenotypes, including D. geminata, related to P acquisition and polysaccharide metabolism at the low P site and cell division and growth at the high P site.

References

Amin, S.A., Parker, M.S., Armbrust, E.V., 2012. Interactions between Diatoms and Bacteria. Microbiol. Mol. Biol. R. 76, 667–684. doi:10.1128/MMBR.00007-12

Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, S., Allen, A.E., Apt, K.E., Bechner, M., Brzezinski, M.A., Chaal, B.K., Chiovitti, A., Davis, A.K., Demarest, M.S., Detter, J.C., Glavina, T., Goodstein, D., Hadi, M.Z., Hellsten, U., Hildebrand, M., Jenkins, B.D., Jurka, J., Kapitonov, V.V., Kroger, N., Lau, W.W.Y., Lane, T.W., Larimer, F.W., Lippmeier, J.C., Lucas, S., Medina, M., Montsant, A., Obornik, M., Parker, M.S., Palenik, B., Pazour, G.J., 2004. The Genome of the Diatom Thalassiosira pseudonana: Ecology, Evoluation and Metabolism. Science. 306: doi:10.1126/science.1101156

Blanco, S., Ector, L., 2009. Distribution, ecology and nuisance effects of freshwater invasive diatom Didymosphenia geminata (Lyngbye) M. Schmidt: a literature review. Nova Hedwigia. 88, 347–422. doi:10.1127/0029-5035/2009/0088-0347

Bosse, D., Kock, M.,1998. Influence of phosphate starvation on phosphohydrolases during development of tomato seedlings. Plant Cell Environ. 21, 325–332. doi:10.1046/j.1365-3040.1998.00289.x

Bothwell, M.L., Kilroy, C., 2011. Phosphorus limitation of the freshwater benthic diatom Didymosphenia geminata determined by the frequency of dividing cells. Freshwat. Biol. 56, 565–578. doi:10.1111/j.1365-2427.2010.02524.x

Bothwell, M.L., Taylor, B.W., Kilroy, C., 2014. The Didymo story: the role of low dissolved phosphorus in the formation of Didymosphenia geminata blooms. Diatom Res. 29, 229–236. doi:10.1080/0269249X.2014.889041

Bowler, C., Allen, A.E., Badger, J.H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., Martens, C., Maumus, F., Otiller, R.P., Rayko, E., Salamov, A., Vandepoele, K., Beszteri, B., Gruber, A., Heijde, M., Katinka, M., Mock, T., Valentin, K., Verret, F., Berges, J.A., Brownlee, C., Cadoret, J.P., Chiovitti, A., Choi, C.J., Coesel, S., De Martino, A., Detter, J.C., Durkin, C., Falciatore, A., Fournet, J., Haruta, M., Huysman, M.J.J., Jenkins, B.D., Jiroutova, K., Jorgensen, R.E., Joubert, Y., Kaplan A., Kroger, N., Kroth, P.G., La Rouche, J., Lindquist, E., Lommer, M., Martin-Jezequel, V., Lopez, P. J., Lucas, S., Mangogna, M., McGinnis, K., Medlin, L.K., Montsont, A., Oudot- Le Secq, M.P., Napoli, C., Obornik, M. Schnitzler Parker, M., Petit, J.L., Porcel, B.M., Poulsen, N., Robison, M., Rychlewski, L., Rynearson, T.A., Schmutz, J., Shapiro, H., Siaut, M. Stanley, M., Sussman, M.R., Taylor, A.R., Vardi, A., von Dassow, P.,Vyverman, W., Willis, A., Green, B.R., Van de Peer, Y., Grigoriev, L.V., 2008. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Science. 456, 239–244. doi:10.1038/nature07410

British Columbia Ministry of Environment, Environmental Protection Division., 2011. Water Quality Assessment and Objectives for the Cowichan and Koksilah Rivers. First Update.

British Columbia Ministry of Environment, Environmental Protection Divison, 2014. Water Quality Assessment and Objectives for the Little Qualicum River Community Watershed. Technical Report.

Bruckner, C.G., Rehm, C., Grossart, H.P., Kroth, P.G., 2011. Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria. Environ. Microbiol. 13, 1052–1063. doi:10.1111/j.1462-2920.2010.02411.x

Buchfink, B., Xie, C., Huson, D.H., 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60. doi:10.1038/nmeth.3176

CPP-Hutchinson, 2013. Bow River phosphorus management plan, water quality data analysis. Prepared by CPP Environmental Corp and Hutchinson Environmental Services Ltd. for ESRD.

Chung, C.W.Y., 2013. Diel oxygen cycles in the Bow River: Relationships to Calgary’s urban nutrient footprint and periphyton and macrophyte biomass. MSc Thesis, University of Calgary, Calgary, Alberta, Canada.

Dalziel, A.C., Rogers, S.M., Schulte, P.M., 2009. Linking genotypes to phenotypes and fitness: how mechanistic biology can inform molecular ecology. Mol. Ecol. 18, 4997–5017. doi:10.1111/j.1365-294X.2009.04427.x

Eisenrich, S.J., Bannerman, R.T., Armstrong, D.E., 1975. A simplified phosphorus analysis technique. Environ. Lett. 9, 43–53. doi:10.1080/00139307509437455

Gonin, M., Quardokus, E.M., O’Donnol, D., Maddock, J., Brun, Y. V., 2000. Regulation of stalk elongation by phosphate in Caulobacter crescentus

. J. Bacteriol. 182, 337–347. doi:10.1128/jb.182.2.337-347.2000

Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B., Lieber, M., Macmanes, M.D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C.N., Henschel, R., LeDuc, R.D., Friedman, N., Regev, A., 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512. doi:10.1038/nprot.2013.084

Jackson, L.J., Corbett, L., Scrimgeour, G., 2016. Environmental constraints on Didymosphenia geminata occurrence and bloom formation in Canadian Rocky Mountain lotic systems. Can. J. Fish. Aquat. Sci. 73, 1–9. doi:10.1139/cjfas-2015-0361

Jones, L.R., Manrique, J.M., Uyua, N.M., Whitton, B.A., 2019. Genetic analysis of the invasive alga Didymosphenia geminata in Southern Argintina: Evidence of a Pleistocene origin of local lineages. Nature Research Scientific Reports. 9, 18706. doi:10.1038/s41598-019-55155-1

Kilroy, C., Bothwell, M.L., 2011. Environmental control of the stalk length in the bloom-forming freshwater benthic diatom Didymosphenia geminata (Bacillariophyceae). J. Phycol. 47, 981–989. doi:10.1111/j.1529-8817.2011.01029.x

Kilroy, C., Bothwell, M.L., 2012. Didymosphenia geminata growth rates and bloom formation in relation to ambient dissolved phosphorus concentration. Freshwat. Biol. 57, 641–653. doi:10.1111/j.1365-2427.2011.02727.x

Kirkwood, A.E., Shea, T., Jackson, L.J., McCauley, E., 2007. Didymosphenia geminata in two Alberta headwater rivers: an emerging invasive species that challenges conventional views on algal bloom development. Can. J. Fish. Aquat. Sci. 64:1703–1709. doi:10.1139/f07-152

Kirkwood, A.E., Jackson, L.J., McCauley, E., 2009. Are dams hotspots for Didymosphenia geminata blooms? Freshwat. Biol. 54, 1856–1863. doi:10.1111/j.1365-2427.2009.02231.x

Kuhajek, J.M., Wood, S.A., 2016. A synthetic culture medium for the freshwater diatom Didymosphenia geminata. Diatom Res. 31(3), 303–311. doi:10.1080/0269249X.2016.1220985

Ladrera, R., Goma, J., Prat, N., 2018. Effects of Didymosphenia geminata massive growth on stream communities: Smaller organisms and simplified food web structure. PLOS ONE. 13: e0193545. doi:10.1371/journal.pone.0193545

Lewin, J.C., 1962. Silicification. Physiology and Biochemistry of Algae. Academic Press, New York.

Levine, J.M., Vila, M., D’Antonio, C.M., Dukes, J.S., Grigulis, K., Lavorel, S., 2003. Mechanisms underlying the impacts of exotic plant species. P. R. Soc. B-Biol. Sci. 270, 775–781. doi:10.1098/rspb.2003.2327

Lindstrom, E.A., Skulberg, O.M., 2008. Didymosphenia geminata – a native diatom species of Norwegian Rivers coexisting with the Atlantic salmon. p. 35–40. Proceedings of the 2007 International Workshop on Didymosphenia geminata, Montreal, Quebec. Can. Tech. Rep. Fish. Aquat. Sci. 2795.

Morgulis, A., Coulouris, G., Raytselis, Y., Madden, T.L., Agarwala, R., Schaffer, A.A., 2008. Database indexing for production MegaBLAST searches. Bioinformatics. 116, 1757–1764. doi:10.1093/bioinformatics/btn322

Nierman, W.C., Feldblyum, T.V., Laub, M.T., I.T. Paulsen, K.E. Nelson, J. Eisen, J.F. Heidelberg, M.R.K. Alley, N. Ohta, J.R. Maddock, I. Potocka, W.C. Nelson, A. Newton, C. Stephens, N.D. Phadke, B. Ely, R.T. DeBoy, R.J. Dodson, A.S. Durkin, M.L. Gwinn, D.H. Haft, J.F. Kolonay, J. Smit, M.B. Craven, H. Khouri, J. Shetty, K. Berry, T. Utterback, K. Tran, A. Wolf, J. Vamathevan, M. Ermolaeva, O. White, S.L. Salzberg, J.C. Venter, L. Shapiro, and C.M. Fraser. 2001. Complete genome sequence of Caulobacter crescentus

. P. Natl. Acad. Sci. USA. 98:4136–4141. doi:10.1073/pnas.061029298

Qi, Y., Kobayashi, Y., Hulett, F.M., 1997. The pst operon of Bacillus subtilis has a phosphate-regulated promoter and is involved in phosphate transport but not in regulation of the pho regulon. J. Bacteriol. 179, 2534–2539. doi:10.1128/jb.179.8.2534-2539.1997

R Development Core Team, 2016. R: a language and environment for statistical computing [online]. R Foundation for Statistical Computing, Vienna, Austria. Available from: http://www.R-project.org.

Taylor, B.W., Bothwell, M.L., 2014. The Origin of Invasive Microorganisms Matters for Science, Policy, and Management: The Case of Didymosphenia geminata

. BioScience. 64, 531–538. doi:10.1093/biosci/biu060

Uematsu, S., Goto, Y., Suzuki, T., Sasazawa, Y., Dohmae, N., Simizu, S., 2014. N-Glycosylation of extracellular matrix protein 1 (ECM1) regulates its secretion, which is unrelated to lipoid proteinosis. FEBS Open Bio. 4, 879–885. doi:10.1016/j.fob.2014.10.004

Webb, N.A, Mulichak, A.M., Lam, J.S., Rocchetta, H.L., Garavito, R.M., 2004. Crystal structure of a tetrameric GDP-D-mannose 4,6-dehydratase from a bacterial GDP-D-rhmnose biosynthetic pathway. Protein Sci. 13, 529–539. doi:10.1110/ps.03393904

Whitton, B.A., Ellwood, N.T.W., Kawecka, B., 2009. Biology of the freshwater diatom Didymosphenia geminata: a review. Hydrobiologia 630, 1–37. doi:10.1007/s10750-009-9753-5

Wustman, B.A., Gretz, M.R., Hoagland, K.D., 1997. Extracellular Matrix Assembly in Diatoms (Bacillariophyceae). Plant Physiol. 113, 1071–1080. doi:10.1104/pp.113.4.1071

Yamamoto, Y., Tsukuda, H., 2009. Measurement of in situ specific growth rates of Microcystis (Cyanobacteria) from the frequency of dividing cells. J. Phycol. 45, 1003–1009. doi:10.1111/j.1529-8817.2009.00723.x

Published

2020-07-02