The relationship of macrobenthic functional group composition and hypoxia in the Changjiang River estuary and its adjacent areas

Authors

  • Liuzhen He Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, P. R. China
  • Lu Shou Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, P. R. China
  • Yibo Liao Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, P. R. China
  • Yanbin Tang Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, P. R. China
  • Quanzhen Chen Second Institute of Oceanography, Ministry of Natural Resources, No.36, Baochu North Road, Hangzhou 310012, P. R. China
  • Jianfang Chen Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, P. R. China
  • Aigen Gao Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, P. R. China

Keywords:

macrobenthos, environmental factors

Abstract

This study investigates the relationship between macrobenthic functional group composition and hypoxia in the Changjiang River estuary and its adjacent sea areas. A total of 82 stations were divided into three areas, named non-hypoxic area, hypoxic area and the Changjiang River, respectively. A total of 256 macrobenthic species were collected, which were divided into five functional groups, including carnivorous, detritivorous, omnivorous, phytophagous, and the planktivorous functional group. A similarity analysis performed on the macrobenthic functional groups of the three zones indicates that the functional group distributions of non-hypoxic and hypoxic zones are not significantly different, whereas the functional group compositions of the Changjiang River estuary and the other two zones are rather different. The results of canonical correspondence analysis reveal that the distribution of macrobenthic functional groups is compounded by various environmental factors, of which dissolved inorganic nitrogen, salinity, and temperature exert a significant effect. Combining the results of previous studies, we speculate that macrobenthos are able to adapt to the occurrence of hypoxia by changing their body morphology, distribution location, and community structure. When the environmental conditions prevent the hypoxia from occurring, persisitent hypoxic zones can recover their marine microbenthic community.

References

Andersen, A.N., 1995. A classification of Australian ant communities, based on functional groups which parallel plant life-forms in relation to stress and disturbance. Journal of Biogeography 22, 15–29. doi:10.2307/2846070

Brown, S.S., Gaston, G.R., Rakocinski, C.F., Heard, R.W., 2000. Effects of sediment contaminants and environmental gradients on macrobenthic community trophic structure in Gulf of Mexico estuaries. Estuaries 23, 411–424. doi:10.2307/1353333

Chen, B., Wang, K., Liu, J., Gao, F., 2016. The Impact of Super Typhoon Saomai (0608) on the Offshore Environment near the Yangtze Estuary. Earth Science 41(8),1401–1412.

Conlan, K., Aitken, A., Hendrycks, E., McClelland, C., Melling, H., 2008. Distribution patterns of Canadian Beaufort Shelf macrobenthos. Journal of Marine Systems 74, 864–886. doi:10.1016/j.jmarsys.2007.10.002

Conley, D.J., Carstensen, J., Aigars, J., 2011. Hypoxia Is Increasing in the Coastal Zone of the Baltic Sea. Environmental Science and Technology 45(16), 6777–6783. doi:10.1021/es201212r

Conley, D.J., Björck, S., Bonsdorff, E., Carstensen, J., Destouni, G., Gustafsson, B.G., Hietanen, S., Kortekaas, M., Kuosa, H., Meier, H.E.M., Müller-Karulis, B., Nordberg, K., Norkko, A., Nürnberg, G., Pitkänen, H., Rabalais, N.N., Rosenberg, R., Savchuk, O.P., Slomp, C.P., Voss, M., Wulff, F., Zillén, L., 2009. Hypoxia-related processes in the Baltic Sea. Environmental Science & Technology 43(10), 3412- 3420. doi:10.1021/es802762a

Dauer, D.M., Rodi, A.J., Ranasinghe, J.A., 1992. Effects of low dissolved oxygen events on the macrobenthos of the Lower Chesapeake Bay. Estuaries 15(3), 384–391. doi:10.2307/1352785

Data on the comprehensive national oceanographic survey (volume I): Observations and records of hydro-meteorological and chemical elements of the bohai sea, yellow sea and east China sea at large surface stations. 1961. Peking.

Diaz, R.J., 2001. Overview of hypoxia around the world. Journal of Environmental Quality 30(2), 275–281. doi:10.2134/jeq2001.302275x

Diaz, R.J., Rosenberg, R., 2008. Spreading dead zones and consequences for marine ecosystems. Science, 321(5891): 926–929. doi:10.1126/science.1156401

Gaudêncio, M.J., Cabral, H.N., 2007. Trophic structure of macrobenthos in the Tagus estuary and adjacent coastal shelf. Hydrobiologia 587 241–251. doi:10.1007/s10750-007-0686-6

Jia, H.B., Cao L.Y., 2014. Canonical Correspondence Analysis of Spring Macrobenthos Community and Its Environment in Changjiang Estuary and Adjacent Sea. Environmental Monitoring in China 30(1).

Karlsson, O.M., Jonsson, P.O., Lindgren, D., Malmaeus, M.J., Stehn, A., 2017. Indications of recovery from hypoxia in the inner stockholm archipelago. AMBIO 39, 486–495. doi:10.1007/s13280-010-0079-3

Lamont, P.A., Gage, J.D., 2006. Morphological responses of macrobenthic polychaetes to low oxygen on the Oman continental slope, NW Arabian Sea. Deep Sea Research II: Topical Studies in Oceanography, 47(1), 9–24. doi:10.1016/S0967-0645(99)00102-2

Levings, C.D., 1980. Demersal and benthic communities in Howe Sound basin and their responses to dissolved oxygen deficiency. Can Tech Rpt Fish Aquat Sci. 951, 27.

Li, D.J., Zhang, J., Huang, D.J., Wu, Y., Liang, J., 2002. Oxygen depletion off the Changjiang (Yangtze River) estuary. Science in China Series D: Earth Sciences, 45(12), 1137- 1146. doi:10.1360/02yd9110

Liao, Y.B., Shou L., Tang Y.B., Zeng, J., Gao, A., Chen, Q., Yan, X., 2017. Macrobenthic assemblages of the Changjiang River estuary (Yangtze River, China) and adjacent continental shelf relative to mild summer hypoxia. Chinese Journal of Oceanology and Limnology, 35(3), 481–488. doi:10.1007/s00343-017-5285-4

Liu, H.X., Li, D.J., Gao, L., Wang, W.W., Chen, W.Q., 2012. Study on Main Influencing Factors of Formation and Deterioration of Summer Hypoxia off the Yangtze River Estuary. Advances in Marine Science. 30(2), 186–197.

Montagna, P.A., Ritter, C., 2006. Direct and indirect effects of hypoxia on benthos in Corpus Christi Bay, Texas, USA. Journal of experimental marine biology and ecology 330(1), 119–131. doi:10.1016/j.jembe.2005.12.021

Navarro-Barranco, C., Tierno-de-Figueroa, J.M., Guerra-García, J.M., Sánchez-Tocino, L., García-Gómez, J.C., 2013. Feeding habits of amphipods (Crustacea: Malacostraca) from shallow soft bottom communities: comparison between marine caves and open habitats. Journal of Sea Research, 78, 1–7. doi:10.1016/j.seares.2012.12.011

Nilsson, H.C., Rosenberg, R., 2000. Succession in marine benthic habitats and fauna in response to oxygen deficiency: analysed by sediment profile imaging and by grab samples. Marine Ecology Progress Series, 197, 139–149. doi:10.3354/meps197139

Rabalais, N.N., Turner, R.E., Wiseman Jr., W.J, 2002. Gulf of Mexico hypoxia, A.K.A. “The dead zone”. Annual Review of Ecology and Systematics 33(1), 235–263. doi:10.1146/annurev.ecolsys.33.010802.150513

Rabalais, N.N., Turner, R.E., Sen Gupta, B.K., Boesch, D.F., Chapman, P., Murrell, M.C., 2007. Hypoxia in the northern Gulf of Mexico: does the science support the Plan to Reduce, Mitigate, and Control Hypoxia? Estuaries and Coasts, 30(5), 753–772.

Rabouille, C., Conley, D.J., Dai, M.H., Cai, W.J., Chen, C.T.A., Lansard, B., Green. R., Yin, K., Harrison, P.J., Dagg, M., McKee, B., 2008. Comparison of hypoxia among four riverdominated ocean margins: the Changjiang (Yangtze), Mississippi, Pearl, and Rhône rivers. Continental Shelf Research, 28(12), 1 527–1 537. doi:10.1016/j.csr.2008.01.020

Rosenberg, R., Nilsson, H.C., Diaz, R.J., 2001. Response of Benthic Fauna and Changing Sediment Redox Profiles over a Hypoxic Gradient. Estuarine. Coastal and Shelf Science 53(3), 343–350. doi:10.1006/ecss.2001.0810

Rowan, C., 2017. Martindale, Martin Aberhan. Response of macrobenthic communities to the Toarcian Oceanic Anoxic Event in northeastern Panthalassa (Ya Ha Tinda, Alberta, Canada).Palaeogeography, Palaeoclimatology, Palaeoecology.

Sturdivant, S.K., Díaz, R.J., Llansó, R., Dauer, D.M., 2014. Relationship between hypoxia and macrobenthic production in Chesapeake Bay. Estuaries and Coasts 37(5), 1219–1232. doi:10.1007/s12237-013-9763-4

ter Braak, P. Šmilauer, C.J.F., 1998. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4), Microcomputer Power, Ithaca, NY

Tu, J.B., Wang, B.D., 2006. Assessment of Eutrophication Status in the Changjiang River Estuary and Adjacent Sea Areas. Advances in Marine Science 24(4), 532–538.

Tyson, R.V., Pearson, T.H., 1991. Modern and ancient continental shelf anoxia: an overview. Geological Society, London, Special Publications 58(1), 1–24. doi:10.1144/GSL.SP.1991.058.01.01

Wang, Y.M., Li, D.J., Fang, T., 2008. Study on relation of distribution of benthos and hypoxia in Yangtze River Estuary and adjacent sea. Marine Environmental Science 27(2), 139–143,164.

Wang, Y.M., Fang, T., Li, D.J., 2009. Abundance and biom ass of benthos in Changjiang Estuary and adjacent sea. Marine Environmental Science 28(4), 366–382.

Wei, Q.S., Wang, B.D. Chen, J., Xia, C., Qu, D., Xie, L., 2015. Recognition on the forming-vanishing process and underlying mechanisms of the hypoxia off the Yangtze River estuary. Scientia Sinica Terrae 45(2),187–206.

Xu, Y., Li, X.Z., Wang, H.F., Zhang B L, 2006. Status of macrobenthic diversity and distribution in Subei Shoal, China. Aquatic Ecosystem Health Management vol 19(4), 411–419. doi:10.1080/14634988.2016.1249257

You, Z.J., Tao, L., Jiao, H.F., Shi, H.X., Lou, D., 2011. A survey of macrobenthos in the Xiangshan Bay. Oceanologia et Limnologia Sinica, 42, 431–435. (in Chinese with English abstract).

Zhang, J., Zhang, Z.F., Liu, S.M., Wu, Y., Xiong, H., Chen, H.T., 1999. Human impacts on the large world rivers: would the Changjiang (Yangtze River) be an illustration. Global Biogeochemical Cycles, 13(4), 1099–1105. doi:10.1029/1999GB900044

Zhang, J., Gilbert, D., Gooday, A.J., Levin, L., Naqvi, S.W.A., Middelburg, J.J., Scranton, M., Ekau, W., Peña, A., Dewitte, B., Oguz, T., Monteiro, P.M.S., Urban, E., Rabalais, N.N., Ittekkot, V., Kemp, W.M., Ulloa, O., Elmgren, R., Escobar-Briones, E., Van der Plas, A.K., 2010, Natural and humaninduced hypoxia and consequences for coastal areas: Synthesis and future development. Biogeosciences, 7(5), 1443- 1467. doi:10.5194/bg-7-1443-2010

Zhang, Y.Y., Zhang, J., Wu, Y., 2007. Characteristics of Dissolved Oxygen and Its Affecting Factors in the Yangtze Estuary. Environmental Science. 28 (8), 1649–1654.

Zhou, F., Huang, D.J., Ni, X.B., Ni, X., Xuan, J., Zhang, J., Zhu, K., 2010. Hydrographic analysis on the multi-time scale variability of hypoxia adjacent to the Changjiang River E17), 4728–4740.

Published

2020-07-02