Low electric current density enhances the calcification rate of the colonial Stony Coral Galaxea fascicularis

Authors

  • Baowei Huang Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • Tao Yuan Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • Yuxian Liang Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • Yajuan Guo Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • Xiangcheng Yuan Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • Weihua Zhou Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • Hui Huang Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
  • Sheng Liu Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

Keywords:

zooxanthellae, quantum yield, electrolytic mineral acceleration, mineral accretion, photosynthesis

Abstract

This study assessed the effects of different electric current densities on the calcification and photosynthetic physiology of a massive, colonial stony coral species. Coral survivorship, calcification rate, and photosynthetic parameters (zooxanthellae density and chlorophyll fluorescence) were measured to determine the physiological and photosynthetic performance of Galaxea fascicularis after exposure to different electric current densities. After 60 days of treatment, survival of G. fascicularis was higher at low electric current density (10 mA m−2) than in the control and at high electric current density (100 mA m−2). Electric current did not alter zooxanthellae densities, but did enhance the photosynthetic processes (e.g. maximum electron transport rates (rETRm), and maximum quantum yield (Fv/Fm)) within 45 days. Coral calcification rate increased in response to low electric current density up to 30 days, but the effects of the electric current were not significant after a longer period of treatment. Overall, our results indicated that mineral accretion technology with appropriate electric current density conditions was somewhat helpful in enhancing coral growth, and thus this technique may be used in the restoration and management of massive stony coral reefs.

References

Allemand, D., Christine Ferrier-Pagès, Furla, P., Fanny Houlbrèque, Puverel, S., & Stéphanie R., et al. 2004. Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. CR Palevol 3, 453–467.

Anthony, K.R.N., Willis, B.L., 2002. Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnol. Oceanogr. 47, 1417–1429. doi:10.4319/lo.2002.47.5.1417

Badger, M.R., Price, G.D., 1994. The role of carbonic anhydrase in photosynthesis. Plant Biol. 45, 369–392. doi:10.1146/annurev.pp.45.060194.002101

Barott, K. L., Perez, S. O., Linsmayer, L. B., & Tresguerres, M., 2015. Differential localization of ion transporters suggests distinct cellular mechanisms for calcification and photosynthesis between two coral species. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R235–R246. doi:10.1152/ajpregu.00052.2015

Barron, M.E., Thies, A.B., Espinoza, J.A., Barott, K.L., Hamdoun, A., Tresguerres, M., 2018. A vesicular Na+/Ca2+ exchanger in coral calcifying cells. PLOS One, 13. doi:10.1371/journal.pone.0205367

Beer, S., Vilenkin, B., Weil, A., Veste, M., Susel, L., Eshel, A., 1998. Measuring photosynthetic rates in seagrasses by pulse amplitude modulated (PAM) fluorometry. Mar. Ecol. Prog. Ser. 174, 293–300. doi:10.3354/meps174293

Borell, E.M., Romatzki, S.B.C., Ferse, S.C.A., 2010. Differential physiological responses of two congeneric scleractinian corals to mineral accretion and an electric field. Coral Reefs 29, 191–200. doi:10.1007/s00338-009-0564-y

Comeau, S., Tambutté, E., Carpenter, R. C., Edmunds, P. J., Evensen, N. R., & Allemand, D., et al. 2017. Coral calcifying fluid pH is modulated by seawater carbonate chemistry not solely seawater pH. Proc. Royal Soc. B 284.

Damayanti, L.P.A., Ahyadi, H., Candri, D.A., Sabil, A., 2011. Growth rate of Acropora formosa and Montipora digitata transplanted on biorock in Gili Trawangan. Journal of Indonesian. Coral Reefs 1, 114–119

Dickson, A.G., Sabine, C.L., Christian, J.R. (Eds.), 2007. Guide to Best Practices for Ocean CO2 Measurements. PICES Special Publication. North Pacific Marine Science Organization, Sidney, British Columbia. 191 pp.

Eashwar, M., Sathish Kumar, P., Ravishankar, R., & Subramanian, G., 2013. Sunlight-enhanced calcareous deposition on cathodic stainless steel in natural seawater. Biofouling 29, 185–193. doi:10.1080/08927014.2012.755673

Erez, J., Braun, A., 2007. Calcification in hermatypic corals is based on direct seawater supply to the biomineralization site. Geochimica et Cosmochimica Acta 71, A260–A260.

Estes, A.M., Kempf, S.C., Henry, R.P., 2003. Localization and quantification of carbonic anhydrase activity in the symbiotic scyphozoan Cassiopea xamachana.

Biol. Bull. 204, 278–289. doi:10.2307/1543599

Feng, Y., Hare, C. E., Rose, J. M., Handy, S. M., Ditullio, G. R., & Lee, P. A., et al. 2010. Interactive effects of iron, irradiance and CO2 on Ross Sea phytoplankton. Deep-Sea Res. Part I 57, 368–383.

Ferrario, F., Beck, M.W., Storlazzi, C.D., Micheli, F., Shepard, C.C., Airoldi, L., 2014. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 5, 3794. doi:10.1038/ncomms4794

Gorbatsevich, L.I., 1997. Initial survival of coral nubbins transplanted by a new coral transplantation technology-options for reef rehabilitation. Mar. Ecol. Prog. Ser. 150, 287–292.

Goreau, T.J., 2012. Innovative methods of marine ecosystem restoration. CRC Press 5, 205–230.

Goreau, T.J., 2014. Electrical stimulation greatly increases settlement, growth, survival, and stress resistance of marine organisms. Nat. Resour. Forum 05, 527–537. doi:10.4236/nr.2014.510048

Hilbertz, W.H., 1992. Solar-generated building material from seawater as a sink for carbon. AMBIO 21, 126–129.

Hilbertz, W.H., Goreau, T.J., 1996. Method of enhancing the growth of aquatic organisms, and structures created thereby: US. Patent number 5 US Patent Office, pp

Hoegh-Guldberg, O., 1988. A method for determining the surface area of corals. Coral Reefs 7, 113–116. doi:10.1007/BF00300970

Huang, B., Yuan, X., Huang, H., Liu, S., 2017. Comparison of calcium carbonate crystals and coral bone crystals by electrodeposition of seawater. Ocean Sci. 41(07), 113–119.

Jokiel, P.L., Maragos, J.E., Franzisket, L., 1978. Coral growth: buoyant weight technique. In: Stoddart, D.R., Johannes, R.E. (Eds.), Coral Reefs: Research Methods, pp. 529–542. UNESCO Monographs on Oceanographic Methodology, Paris.

Jones, R.J., 1997. Zooxanthellae loss as a bioassay for assessing stress in corals. Mar. Ecol. Prog. Ser. 149, 163–171. doi:10.3354/meps149163

Jones, R.J., Yellowlees, D., 1997. Regulation and control of intracellular algae (= zooxanthellae) in hard corals. Philos. Trans. Royal Soc. B 352, 457–468. doi:10.1098/rstb.1997.0033

Kihara, K., Taniguchi, H., Koibuchi, Y., Yamamoto, S., Kondo, Y., Hosokawa, Y., 2013. Enhancing settlement and growth of corals using feeble electrochemical method. Galaxea, JCRS 15, 323–329. doi:10.3755/galaxea.15.323

Levas, S. J., Andréa G. Grottoli, Hughes, A., Osburn, C. L., & Matsui, Y., 2013. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: Implications for resilience in mouding corals. PLOS One, 8. doi:10.1371/journal.pone.0063267

Lin, D., Smith, M.A., Elter, J., Champagne, C., Downey, C.L., Beck, J., Offenbacher, S., 2003. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis

. Mar. Biol. 142, 419–426.

Moya, A., Tambutté, S., Tambutté, E., Zoccola, D., Caminiti, N., Allemand, D., 2006. Study of calcification during a daily cycle of the coral Stylophora pistillata: implications for light-enhanced calcification. J. Exp. Biol. 209, 3413–3419. doi:10.1242/jeb.02382

Olivotto, I., Planas, M., Simões, N, Holt, G., Avella, M., & Calado, R., 2011. Advances in breeding and rearing marine ornamentals. J. World Aquacult. Soc. 42, 135–166. doi:10.1111/j.1749-7345.2011.00453.x

Osinga, R., Redeker, D., Beukelaar, P.B., Wijffels, R.H., 1999. Measurement of sponge growth by projected body area and underwater weight. Optik 125, 3756–3758.

Ralph, P.J., Gademann, R., 2005. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquat. Bot. 82, 222–237. doi:10.1016/j.aquabot.2005.02.006

Rinkevich, B., 2005. Conservation of coral reefs through active restoration measures: Recent approaches and last decade progress. Environ. Sci. Technol. 39, 4333–4342. doi:10.1021/es0482583

Rollion-Bard, C., Blamart, D., 2015. Possible controls on Li, Na, and Mg incorporation into aragonite coral skeletons. Chem. Geol. 396, 98–111. doi:10.1016/j.chemgeo.2014.12.011

Romatzki, S.B.C., 2014. Influence of electrical fields on the performance of Acropora coral transplants on two different designs of structures. Mar. Biol. Res. 10, 449–459. doi:10.1080/17451000.2013.814794

Sabater, M.G., Yap, H.T., 2002. Growth and survival of coral transplants with and without electrochemical deposition of CaCO3

. J. Exp. Mar. Biol. Ecol. 272, 131–146. doi:10.1016/S0022-0981(02)00051-5

Sabater, M.G., Yap, H.T., 2004. Long-term effects of induced mineral accretion on growth, survival and corallite properties of Porites cylindrica Dana. J. Exp. Mar. Biol. Ecol. 311, 355–374. doi:10.1016/j.jembe.2004.05.013

Schreiber, U., 2004. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: An overview. In: Papageorgiou, G.C., Govindjee (Eds.), Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration, Springer Netherlands. 19, 279–319.

Schuhmacher, H., Schillak, L., 1994. Integrated electrochemical and biogenic deposition of hard material—a nature-like colonization substrate. B. Mar. Sci. 55, 672–679.

Schutter, M., Crocker, J., Paijmans, A., Janse, M., Osinga, R., Verreth, A.J., Wijffels, R.H., 2010. The effect of different flow regimes on the growth and metabolic rates of the scleractinian coral Galaxea fascicularis. Coral Reefs 29, 737–748. doi:10.1007/s00338-010-0617-2

Schutter, M., Kranenbarg, S., Wijffels, R.H., Verreth, J., Osinga, R., 2011. Modification of light utilization for skeletal growth by water flow in the scleractinian coral Galaxea fascicularis

. Mar. Biol. 158, 769–777. doi:10.1007/s00227-010-1605-3

Senatore, A., Raiss, H., Le, P., 2016. Physiology and evolution of voltage-gated calcium channels in early diverging animal phyla: Cnidaria, Placozoa, Porifera and Ctenophora

. Front. Physiol. 7. doi:10.3389/fphys.2016.00481

Spencer Davies, P., 1989. Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar. Biol. 101(3), 389–395. doi:10.1007/BF00428135

Stromberg, S.M., Lundalv, T., Goreau, T.J., 2010. Suitability of mineral accretion as a rehabilitation method for cold-water coral reefs. J. Exp. Mar. Biol. Ecol. 395, 153–161. doi:10.1016/j.jembe.2010.08.028

Tambutté S, Holcomb M, Ferrier-Pagès C, Reynaud S, Tambutté É, Zoccola D, Allemand D., 2011. Coral biomineralization: From the gene to the environment. J. Exp. Mar. Biol. Ecol. 408, 58–78. doi:10.1016/j.jembe.2011.07.026

Wells, S., Samoilys, M., Makoloweka, S., Kalombo, H., 2010. Lessons learnt from a collaborative management program in coastal Tanzania. Ocean Coast. Manage. 53(4), 161–168. doi:10.1016/j.ocecoaman.2010.01.007

Wilbur, K.M., Watabe, N., 1976. The mechanisms of mineralization in the invertebrates and plants: symposium. Published for the Belle W. Baruch Institute for Marine Biology and Coastal Research by the University of South Carolina Press, Columbia. 196, 1704–1709.

Wright, J.C., Holliday, C.W., Odonnell, M.J., 1994. Na+/K+-ATPase activity in the pleopods and hindgut-rectum of terrestrial isopods - implications for colligative water-vapor absorption. J. Crustac. Biol. 14, 522–529. doi:10.2307/1548998

Zheng, X., Guo, F., Liu, X., Lin, R., Zhou, Z., Shi, X., 2015. Ocean acidification did not significantly affect the calcification and photosynthesis of adult staghorn cup coral. J. Oceanology, 37(10), 59–68.

Zheng, X., Li, Y., Chen, S., Lin, R., 2018. Effects of calcium ion concentration on calcification rates of six stony corals: A mesocosm study. Aquaculture 497, 246–252. doi:10.1016/j.aquaculture.2018.07.041

Published

2020-07-02