Analysis of the sea storm of 23rd-24th October 2017 offshore Bari (Italy)

Authors

  • Letizia Lusito University of Salento, Lecce (LE), Italy
  • Antonio Francone Polytechnic of Bari, Bari, Italy
  • Davide Strafella University of Salento, Lecce (LE), Italy
  • Elisa Leone University of Salento, Lecce (LE), Italy
  • Felice D’Alessandro University of Milan, Milan (MI), Italy
  • Alessandra Saponieri University of Salento, Lecce (LE), Italy
  • Samuele De Bartolo University of Salento, Lecce (LE), Italy
  • Giuseppe Roberto Tomasicchio University of Salento, Lecce (LE), Italy

Keywords:

wind forecast, waves forecast

Abstract

Between the evening of October 23rd and the evening of October 24th 2017, a sea storm hit the city of Bari, along the Adriatic coast, in the south of Italy, causing widespread damages. Due to the absence of direct observations of wave characteristics, the present paper is aimed to (i) compare the development of the occurred sea storm as hindcasted by ’84 method with the predictions by atmosphere-ocean numerical models and satellite observations and (ii) estimate the most reliable value of the significant wave height, Hs, at the peak of the sea storm, with its associated return period. As a result, the ’84 showed the better agreement with the satellite observations in determining the value of Hs at the peak of the sea storm, compared with the predictions by more sophisticated atmosphere-ocean numerical models. In particular, the obtained value of Hs, equal to 6.58 m, makes the investigated sea storm an exceptional event.

References

Aeronautica Militare (AM), 2017. Bollettini Meteomar, 23, 24, 25 ottobre 2017. Centro Operativo per la Meteorologia, Pratica di Mare, Italy (in italian).

Agenzia per la Protezione dell’Ambiente e per i Servizi Telematici (APAT) and Università degli Studi Roma Tre, Dipartimento di Scienza dell’Ingegneria Civile, 2006. Atlante delle Onde nei Mari italiani, Rapporti APAT, Roma, Italy (In Italian).

Ardhuin, F., Bertotti, L., Bidlot, J.R., Cavaleri, L., Filipetto, V., Lefevre, J.M., Wittmann, P., 2007. Comparison of wind and wave measurements and models in the Western Mediterranean Sea, Ocean Engineering, 34(3–4), 526–541, doi:10.1016/j.oceaneng.2006.02.008

Bencivenga, M., Nardone, G., Ruggiero, F., Calore, D., 2012. The Italian Data Buoy Network (RON). WIT Transactions on Engineering Sciences. 74(12), 321–332. doi:10.2495/AFM120291

Cavaleri, L., Bertotti, L., Lionello, P., 1989. Wind waves evaluation in the Adriatic and Mediterranean seas International Journal for Numerical Methods in Engineering, 27, 57–69. doi:10.1002/nme.1620270106

Cavaleri, L., Bertotti, L., and Lionello, P., 1991. Wind wave cast in the Mediterranean Sea, Journal of Geophysical Research, 96(C6), 10739–10764, doi:10.1029/91JC00322

Copernicus Marine Environment Monitoring Service (CMEMS), 2019. http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=MEDSEA_ANALYSIS_FORECAST_WAV_006_017 (last on 20-11-2019).

EMODnet Bathymetry Consortium, (EMODNET), 2018. EMODnet Digital Bathymetry (DTM). doi:10.12770/18ff0d48-b203-4a65-94a9-5fd8b0ec35f6.

European Center for Medium-range Weather Forecast (ECMWF), 2017. Part VII: ECMWF Wave Model; ECMWF IFS Documentation—Cy43r3 Operational Implementation 11 July 2017. Technical Report; ECMWF, Reading, UK.

European Center for Medium-range Weather Forecast (ECMWF), 2019. ERA-Interim. Available online: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim (last on 20-11-2019).

European Space Agency (ESA), 2019. https://www.esa.int/Applications/Observing_the_Earth/CryoSat.

European Union (EU), 2019. http://marine.copernicus.eu/about-us/about-eu-copernicus/ (last on 20-11-2019).

Hamza, W., Lusito, L., Ligorio, F., Tomasicchio, G.R., D’Alessandro, F., 2018. Wave Climate at Shallow Waters along the Abu Dhabi Coast. Water, 10, 985. doi:10.3390/w10080985

Indian Space Research Organization (ISRO), 2019. https://www.isro.gov.in/Spacecraft/saral (last on 20-11-2019).

Komen, G.J.; Cavaleri, L.; Donelan, M.; Hasselmann, K.; Hasselmann, S.; Janssen, P.A.E.M., 1994. Dynamics and Modelling of Ocean Waves; Cambridge University Press: Cambridge, MA, USA.

Korres, G., Ravdas, M., Zacharioudaki, A., 2019. Mediterranean Sea Waves Analysis and Forecast (CMEMS MED-Waves 2017-2019) (Version 1). Copernicus Monitoring Environment Marine Service (CMEMS). doi:10.25423/CMCC/MEDSEA_ANALYSIS_FORECAST_WAV_006_017

National Aeronautics and Space Administration (NASA), 2019. https://www.jpl.nasa.gov/missions/jason-3/ (last on 20-11-2019).

Regione Puglia, 2007. Piano Regionale delle Coste (PRC) della Regione Puglia: Il clima meteomarino sul litorale pugliese. Bari, Italy (in italian).

Seymour R.J., 1977. Estimating wave generation on restricted fetches. Journal of the Waterway, Port, Coastal and Ocean Division, 103(WW2):251–264.

Smith J. M., 1991. Wind-wave generation on restricted fetches. Dept. of the Army, Waterways Experiment Station, U.S. Army Corps of Engineers Washington, DC 20314-1000, USA.

START Project (START), 2019. https://start.linksmt.it (last on 20-11-2019).

Tolman, H. L., 2002. User manual and system documentation of WAVEWATCH-III version 2.22.” NOAA/NWS/NCEP/OMB technical note 222, 133 pp. 5830 University Research Court, College Park, MD 20740, USA.

Tomasicchio, U. and Tomasicchio, G.R., 2011. Manuale di Ingegneria Portuale e Costiera. HOEPLI, Milano, Italy (in italian).

U.S. Army Corps of Engineers (USACE), 1984. Shore protection manual. Dept. of the Army, Waterways Experiment Station, U.S. Army Corps of Engineers Washington, DC 20314-1000, USA.

WAMDI group, 1988. The WAM Model – A Third Generation Ocean Wave Prediction Model. Journal of Physical Oceanography, 18, 1775–1776. doi:10.1175/1520-0485(1988)018<1775:TWMTGO > 2.0.CO;2

Zeng, Z., Ziegler, A.D., Searchinger, T., Yang, L., Chen, A., Ju, K., Piao, S., Li, L.Z.X., Ciais, P., Chen, D., Liu, J., Azorin-Molina, C., Chappell, A., Medvigy, D., Wood, E.F., 2019. A reversal in global terrestrial stilling and its implications for wind energy production. Nature Climate Change, 9, 979–985. doi:10.1038/s41558-019-0622-6

Published

2020-10-01