Evaluation of the effect of carbamazepine on the concentration of vitellogenin in Pseudoplatystoma magdaleniatum

Authors

  • Sylvia María Cacua Ortiz GDCON Group, Environmental School, Faculty of Engineering, University Research Headquarters (SIU), University of Antioquia, calle 70 No 52 — 21, 050010, Medellin, Colombia
  • Néstor J. Aguirre GeoLimna Group, Environmental School, Faculty of Engineering, University of Antioquia, calle 67 No 53 — 108,050010, Medellin, Colombia
  • Gustavo A. Peñuela GDCON Group, Environmental School, Faculty of Engineering, University Research Headquarters (SIU), University of Antioquia, calle 70 No 52— 21, 050010, Medellin, Colombia

Keywords:

endocrine disruptor, emerging contaminants, pharmaceutical product, Striped Catfish

Abstract

Carbamazepine is a pharmaceutical used in patients with seizures and bipolar disorder, which has been found in wastewater and many water resources. This is due to the inadequate disposal of pharmaceutical waste and the lack of treatment of municipal wastewater, as is the case in Colombia. The two main hydrographic basins of Colombia are the Cauca and Magdalena rivers, which are inhabited by the endemic species Striped Catfish (Pseudoplatystoma magdaleniatum). This has become an endangered species for various reasons, including the high contamination level of these rivers. In 2019, mature adult P. magdaleniatum of both sexes were caught in the Cauca river in Colombia. This was in order to assess the concentration of vitellogenin, as a biomarker of endocrine disruption, resulting from exposure to different levels of concentration of the emerging contaminant carbamazepine for 4 months. These tests were carried out in a fish farm. A significant decrease in the vitellogenin concentration was verified in females at concentrations of 25 µg l-1 and 50 µg l-1, and in males at 50 µg l-1 of carbamazepine, with a significance level of p˂0.05. Carbamazepine could cause a negative feedback in gonadotropin secretion, acting as an estrogen mimicker that causes a decrease in the level of vitellogenin.

References

AriasP. A. 1985. Las ciénagas de Colombia (The wetlands of Columbia. In Spanish.). INDERENA-Rev. Divulgación Pesquera. 22 (3), 38-70.

ArnoldH., PlutaH., BraunbeckT., 1996. Sublethal effects of prolonged exposure to disulfoton in rainbow trout (oncorhynchus mykiss): Cytological alterations in the liver by a potent acetylcholine esterase inhibitor. Ecotox. Environ. Safe. 34(1), 43-55.

AtencioV., KerguelénE., NaarE., PetroR., 2013. Desempeño reproductivo del bocachico Prochilodus magdalenae inducido dos veces en un mismo año. (Reproductive performance of the bocachico Prochilodus magdalenae induced twice in the same year. In Spanish.). Rev. MVZ Córdoba 18(1), 3304-3310.

AtencioV., MonsalveJ., HernándezM., EspinosaJ., Pardo-CarrascoS., 2014. Reproductive performance of the catfish Sorubim cuspicaudus hormonally induced twice in the same year. Proceedings of World Aquaculture Adelaide 2014; 2014 jun 7-14; World Aquaculture Society, Adelaide (South Australia).

BahlmannA., CarvalhoJ.J., WellerM.G., PanneU., SchneiderR.J., 2012. Immunoassays as high-throughput tools: Monitoring spatial and temporal variations of carbamazepine, caffeine and cetirizine in surface and wastewaters. Chemosphere 89(11), 1278-1286.

BahlmannA., BrackW., SchneiderR. J., KraussM, 2014. Carbamazepine and its metabolites in wastewater: Analytical pitfalls and occurrence in germany and portugal. Water Res. 57, 104-114.

BaruccaM., CanapaA., OlmoE., RegoliF., 2006. Analysis of vitellogenin gene induction as a valuable biomarker of estrogenic exposure in various Mediterranean fish species. Environ. Res. 101 (1), 68-73.

BrodinT., PiovanoS., FickJ., KlaminderJ., HeynenM., JonssonM., 2014. Ecological effects of pharmaceuticals in aquatic systems— impacts through behavioural alterations. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 369 (1656), 1-10.

Buitrago-SuárezU. A., BurrB. M., 2007. Taxonomy of the catfish genus pseudoplatystoma bleeker (siluriformes: Pimelodidae) with recognition of eight species. Zootaxa. (1512), 1-38.

ChristiansenL., Winther-NielsenM., HelwegC., 2002. Feminization of fish: the effect of estrogenic compounds and their fate in sewage treatment plants and nature. Danish Environmental Protection Agency 729, 1—184.

ClaraM., StrennB., GansO., MartinezE., KreuzingerN., KroissH., 2005. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res. 39(19), 4797-4807.

ConnorsK. A., DuB., FitzsimmonsP. N., HoffmanA. D., ChamblissC. K., NicholsJ. W., BrooksB. W., 2013. Comparative pharmaceutical metabolism by rainbow trout (oncorhynchus mykiss) liver S9 fractions. Environ. Toxicol. Chem. 32(8), 1810-1818.

CorcoranJ., WinterM.J., TylerCh., 2010. Pharmaceuticals in the aquatic environment: A critical review of the evidence for health effects in fish. Crit. Rev. Toxicol. 40 (4), 287-304.

DaughtonC. G. BrooksB. W., 2011. Environmental contaminants in wildlife: Interpreting tissue concentrations. Taylor and Francis. 8, 281-341.

DelgadoN., 2019. Diagnóstico y remoción de contaminantes emergentes en aguas superficiales y cloacales. Tesis de doctorado. (Diagnosis and removal of emerging pollutants in surface and sewage waters (Thesis). In Spanish.). Universidad Nacional de la Plata, Buenos Aires, Argentina.

DesbrowC., RoutledgeE. J., BrightyG. C., SumpterJ. P., WaldockM., 1998. Identification of estrogenic chemicals in STW effluent. 1. chemical fractionation and in vitro biological screening. J. Environ. Sci. Technol. 32(11), 1549-1558.

DesforgesJ.P., PeacheyB.D., SandersonP.M., WhiteP.A., BlaisJ.M, 2010. Plasma vitellogenin in male teleost fish from 43 rivers worldwide is correlated with upstream human population size. Environ Pollut. 158(10):3279-84.

DuB., HaddadS. P., LuekA., ScottW. C., CasanW., SaariG. N., KristofcoL. A., ConnorsK., RashCh., RasmussenJ., ChamblissC., BrooksB. W., 2014. Bioaccumulation and trophic dilution of human pharmaceuticals across trophic positions of an effluent-dependent wadeable stream. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 369(1656), 1-10.

EPA US, 2007. EPA Method: 1694, Pharmaceuticals and personal care products in water, soil, sediment and biosolids by HPLC/ M/M. EPA-821-R-08-002 (2007)

EscobarJ., 2002. La contaminación de los ríos y sus efectos en las áreas costeras y el mar. (River pollution and its effects on coastal areas and the sea. In Spanish). Comisión económica para América Latina y el Caribe (CEPAL) (Economic Commission for Latin America and the Caribbean), Santiago de Chile, Chile.

EstesJ., DugginsD., RathbunG., 1989. The ecology of extinctions in kelp forest communities. Conserv. Biol. 3 (3), 252-264.

FalconerI. R., ChapmanH. F., MooreM. R., RanmuthugalaG., 2006. Endocrine-disrupting compounds: A review of their challenge to sustainable and safe water supply and water reuse. Environ. Toxicol. 21(2), 181-191.

GalvisG., MojicaJ. I., 2007. The Magdalena River freshwater fishes and fisheries. Aquat ecosyst health. 10 (2), 127-139.

GuptaP., VermaS. K., 2020. Impacts of herbicide pendimethalin on sex steroid level, plasma vitellogenin concentration and aromatase activity in teleost clarias batrachus (linnaeus). Environ. Toxicol. Pharmacol. 75 (103324).

HarriesJ. E., RunnallsT., HillE., HarrisC. A., MaddixS., SumpterJ. P., TylerC. R., 2000. Development of a reproductive performance test for endocrine disrupting chemicals using pair-breeding fathead minnows (pimephales promelas). J. Environ. Sci. Technol. 34(14), 3003-3011.

JonesH. S., TrollopeH. T., HutchinsonT. H., PanterG. H., ChipmanJ. K., 2012. Metabolism of ibuprofen in zebrafish larvae. Xenobiotica 42(11), 1069-1075.

KimeD. E., 1999. A strategy for assessing the effects of xenobiotics on fish reproduction. Sci. Total Environ. 225(1-2), 3-11.

KlaminderJ., JonssonM., FickJ., SundelinA., BrodinT., 2014. The conceptual imperfection of aquatic risk assessment tests: Highlighting the need for tests designed to detect therapeutic effects of pharmaceutical contaminants. Environ. Res. Lett. 9(8), 1-7.

KolleS. N., RamirezT., KampH. G., BuesenR., FlickB., StraussV., van RavenzwaayB., 2012. A testing strategy for the identification of mammalian, systemic endocrine disruptors with particular focus on steroids. Regul. Toxicol. Pharm. 63(2), 259-278.

KonwickB. J., GarrisonA. W., BlackM. C., AvantsJ. K., FiskA. T., 2006. Bioaccumulation, biotransformation, and metabolite formation of fipronil and chiral legacy pesticides in rainbow trout. J. Environ. Sci. Technol. 40(9), 2930-2936.

LubzensE., YoungG., BobeJ., CerdàJ., 2010. Oogenesis in teleosts: How fish eggs are formed. Gen. Comp. Endocrinol. 165(3), 367-389.

MazurC. S., KennekeJ. F., 2008. Cross-species comparison of conazole fungicide metabolites using rat and rainbow trout (onchorhynchus mykiss) hepatic microsomes and purified human CYP 3A4. J. Environ. Sci. Technol. 42(3), 947-954.

MehintoA. C., HillE. M., TylerC. R., 2010. Uptake and biological effects of environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout (oncorhynchus mykiss). J. Environ. Sci. Technol. 44(6), 2176-2182.

MehintoA. C., JayasingheB. S., VandervortD. R., DenslowN. D., MaruyaK. A., 2016. Screening for endocrine activity in water using commercially-available in vitro transactivation bioassays. J. Vis. Exp. (118).

MiaoX., MetcalfeC. D., 2003. Determination of carbamazepine and its metabolites in aqueous samples using liquid chromatography - electrospray tandem mass spectrometry. Anal. Chem. 75(15), 3731-3738.

MoederM., SchraderS., WinklerM., PoppP., 2000. Solid-phase microextraction-gas chromatography-mass spectrometry of biologically active substances in water samples. Journal of Chromatography A. 873(1), 95-106.

MojicaJ. I., ValderramaM. y BarretoC. 2012. Pseudoplatystoma magdaleniatum. In: MojicaJ.I., UsmaJ. S.; Álvarez-LeónR. y LassoC. A. (Eds.), 2012. Libro rojo de peces dulceacuícolas de Colombia 2012. (Red Book of Freshwater Fishes of Colombia 2012. In Spanish), pp. 57-59. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Instituto de Ciencias Naturales de la Universidad Nacional de Colombia, WWF Colombia y Universidad de Manizales Bogotá, D. C., Colombia.

MontreuilV., García A.Rodríguez R. 2001. Biología reproductiva de Prochilodus nigricans (boquichico), en la Amazonía peruana. Folia Amazónica, 12 (1-2), 5-13.

OladejoJ., Olanrewaju FatobaO., PetrikL.F. 2013. A Review of Pharmaceuticals and Endocrine-Disrupting Compounds: Sources, Effects, Removal, and Detections. Water Air and Soil Pollution, 224(1770):1-29

PuckowskiA., MioduszewskaK., ŁukaszewiczP., BoreckaM., CabanM., MaszkowskaJ., StepnowskiP., 2016. Bioaccumulation and analytics of pharmaceutical residues in the environment: A review. J. Pharm. and Biomed. Anal. 127, 232-255.

QiangL., ChengJ., YiJ., RotchellJ. M., ZhuX., ZhouJ., 2016. Environmental concentration of carbamazepine accelerates fish embryonic development and disturbs larvae behavior. Ecotoxicology, 25(7), 1426-1437.

ReinenJ., SuterM. J. -., VögeliA. C., FernandezM. F., KivirantaH., EggenR. I. L., VermeulenN. P. E., 2010. Endocrine disrupting chemicals-linking internal exposure to vitellogenin levels and ovotestis in abramis brama from dutch surface waters. Environ. Toxicol. Pharmacol. 30(3), 209-223.

RougeotC., KrimA., MandikiS. N. M., KestemontP., MélardC., 2007. Sex steroid dynamics during embryogenesis and sexual differentiation in eurasian perch, perca fluviatilis. Theriogenology. 67(5), 1046-1052.

SaaristoM., McLennanA., JohnstoneC. P., ClarkeB.O., WongB. B.M., 2017. Impacts of the antidepressant fluoxetine on the anti-predator behaviors of wild guppies (Poecilia rericulata). Aquat. Toxicol. 183, 38-45.

Saborido-ReyF., 2008. Ecología de la reproducción y potencial reproductivo en las poblaciones de peces marinos. Digital CSIC Ed. Disponible en: http://hdl.handle.net/10261/7260.

SánchezR., 2012. Modelo de estrategias reproductivas en peces que forman agrupaciones de desove. (Tesis de Grado Doctor en Ciencias Marinas. (Model of reproductive strategies in fish that form spawning groups. In Spanish Thesis. Doctor in Marine Sciences. Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas. La Paz. BCS.

SánchezW., SremskiW., PicciniB., PalluetO., Maillot— MarechalE., BetoulleS., JaffalA., Ait— AisaS., BrionF., ThybaudE., HinfrayN., PorcherJ. M., 2011. Adverse effects in wild fish living downstream from pharmaceutical manufacture discharges. Environ. Int. 37 (8), 1342—1348.

SantosL. H. M. L. M., AraújoA. N., FachiniA., PenaA., Delerue-MatosC., MontenegroM. C. B. S. M., 2010. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J. Hazard. Mater. 175(1-3), 45-95.

ScholzS., KordesC., HamannJ., GutzeitH. O., 2004. Induction of vitellogenin in vivo and in vitro in the model teleost medaka (oryzias latipes): Comparison of gene expression and protein levels. Mar. Environ. Res. 57(3), 235-244.

ShiodaT., WakabayashiM., 2000. Effect of certain chemicals on the reproduction of medaka (Oryzias latipes). Chemosphere, 40, 239–243.

SoléM., De AldaM. J. L., CastilloM., PorteC., Ladegaard-PedersenK., BarcelóD., 2000. Estrogenicity determination in sewage treatment plants and surface waters from the catalonian area (NE spain). J. Environ. Sci. Technol. 34(24), 5076-5083.

SoléM., RalduaD., PiferrerF., BarcelóD. Porte, C., 2003. Long -term exposure effects in vitellogen in, sex hormones, and biotransformation enzymes in female carp in relation to a sewage treatment works. Ecotoxicol. Environ. Saf. 56, (3), 373-380.

SumpterJ. P., JoblingS., 1995. Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environ. Health Perspect. 103(SUPPL. 7), 173-178.

ValderramaM., ZárateM., VeraG., MorenoC., P. CaraballoP., J. MartíneJ., 1988. Determinación de la talla media de madurez y análisis de la problemática con referencia a las tallas medias de captura del bagre rayado Pseudoplatystoma fasciatum Linnaeus (Pisces: Pimelodidae) en la cuenca del río Magdalena, Colombia. (Determination of the average size at maturity and analysis of the problem with reference to the average catch sizes of striped catfish Pseudoplatystoma fasciatum Linnaeus (Pisces: Pimelodidae) in the Magdalena river basin, Colombia. In Spanish). Trianea. 2, 537-549.

ValdésM. E., AméM. V., BistoniM. D. L. A., WunderlinD. A., 2014. Occurrence and bioaccumulation of pharmaceuticals in a fish species inhabiting the Suquía river basin (Córdoba, Argentina). Sci. Total Environ. 472, 389-396.

VernouilletG., EullaffroyP., LajeunesseA., BlaiseC., GagnéF., JuneauP., 2010. Toxic effects and bioaccumulation of carbamazepine evaluated by biomarkers measured in organisms of different trophic levels. Chemosphere, 80(9), 1062-1068.

ZárateM., J. MartinezJ., CaraballoP.R., 1988. Captura y esfuerzo pesquero en la cuenca del río Magdalena y su sistema de planos inundables durante la subienda 1987 y estado actual de sus pesquerías. Informe Técnico. (Capture and fishing effort in the Magdalena river basin and its floodplain system during the shoal 1987 and current state of its fisheries. Technical report. In Spanish.) INDERENA, San Cristóbal (Bolívar)

ZárateM., J. MartinezJ., CaraballoP.R., VeraG., ValderramaM., 1989. Evaluación de la captura y esfuerzo pesquero en la cuenca del río Magdalena y su sistema de planos inundables durante la subienda 1988. Informe Técnico. (Evaluation of the catch and fishing effort in the Magdalena river basin and its floodplains system during the shoal 1988. Technical report. In Spanish). INDERENA, San Cristóbal (Bolívar). Zarate, 1989.

ZhangY., GeißenS., GalC., 2008. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73(8), 1151-1161.

ZhaoJ., FurlongE. T., SchoenfussH. L., KolpinD. W., BirdK. L., FeifarekD. J., SchwabE.A.,Ying, G., 2017. Uptake and disposition of select pharmaceuticals by bluegill exposed at constant concentrations in a flow-through aquatic exposure system. J. Environ. Sci. Technol. 51(8), 4434-4444.

Published

2021-04-01